The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, -15.40102862, -14.76028842], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000), [-74.998201, -75.62318601, -76.25337923, -76.88882405, -77.52956425], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0, [0, 0, 1, 'end', 'begin']), [-74.998201, -75.62318601, -75.62318601, -76.88882405, -76.88882405], 4)
Example 2
def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, -15.40102862, -14.76028842], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000), [-74.998201, -75.62318601, -76.25337923, -76.88882405, -77.52956425], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0, [0, 0, 1, 'end', 'begin']), [-74.998201, -75.62318601, -75.62318601, -76.88882405, -76.88882405], 4)
Example 3
def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, -15.40102862, -14.76028842], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000), [-74.998201, -75.62318601, -76.25337923, -76.88882405, -77.52956425], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0, [0, 0, 1, 'end', 'begin']), [-74.998201, -75.62318601, -75.62318601, -76.88882405, -76.88882405], 4)
Example 4
def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, -15.40102862, -14.76028842], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000), [-74.998201, -75.62318601, -76.25337923, -76.88882405, -77.52956425], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0, [0, 0, 1, 'end', 'begin']), [-74.998201, -75.62318601, -75.62318601, -76.88882405, -76.88882405], 4)
Example 5
def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, -15.40102862, -14.76028842], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000), [-74.998201, -75.62318601, -76.25337923, -76.88882405, -77.52956425], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0, [0, 0, 1, 'end', 'begin']), [-74.998201, -75.62318601, -75.62318601, -76.88882405, -76.88882405], 4)
Example 6
def test_broadcast(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000., [0, 1]), [21.5449442, 20.76156441], 4) assert_almost_equal(np.ipmt(0.1/12, list(range(5)), 24, 2000), [-17.29165168, -16.66666667, -16.03647345, -15.40102862, -14.76028842], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000), [-74.998201, -75.62318601, -76.25337923, -76.88882405, -77.52956425], 4) assert_almost_equal(np.ppmt(0.1/12, list(range(5)), 24, 2000, 0, [0, 0, 1, 'end', 'begin']), [-74.998201, -75.62318601, -75.62318601, -76.88882405, -76.88882405], 4)
Example 7
def test_nper(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000.), 21.54, 2)
Example 8
def test_nper2(self): assert_almost_equal(np.nper(0.0, -2000, 0, 100000.), 50.0, 1)
Example 9
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 10
def test_nper(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000.), 21.54, 2)
Example 11
def test_nper2(self): assert_almost_equal(np.nper(0.0, -2000, 0, 100000.), 50.0, 1)
Example 12
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 13
def test_nper(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000.), 21.54, 2)
Example 14
def test_nper2(self): assert_almost_equal(np.nper(0.0, -2000, 0, 100000.), 50.0, 1)
Example 15
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 16
def test_nper(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000.), 21.54, 2)
Example 17
def test_nper2(self): assert_almost_equal(np.nper(0.0, -2000, 0, 100000.), 50.0, 1)
Example 18
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 19
def test_nper(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000.), 21.54, 2)
Example 20
def test_nper2(self): assert_almost_equal(np.nper(0.0, -2000, 0, 100000.), 50.0, 1)
Example 21
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 22
def test_nper(self): assert_almost_equal(np.nper(0.075, -2000, 0, 100000.), 21.54, 2)
Example 23
def test_nper2(self): assert_almost_equal(np.nper(0.0, -2000, 0, 100000.), 50.0, 1)
Example 24
def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when)
Example 25
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 26
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 27
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 28
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 29
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn
Example 30
def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff < tol) iter += 1 rn = rnp1 if not close: # Return nan's in array of the same shape as rn return np.nan + rn else: return rn