Python numpy.character() 使用实例

The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.

Example 1

def load_yeast_tavazoie():
    """Load and return the yeast dataset (Tavazoie et al., 2000) used in the original biclustering study
    of Cheng and Church (2000) as a pandas.DataFrame. All elements equal to -1 are missing values. This
    dataset is freely available in http://arep.med.harvard.edu/biclustering/.

    Reference
    ---------
    Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. In Ismb (Vol. 8, No. 2000, pp. 93-103).

    Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., & Church, G. M. (1999). Systematic determination of genetic
    network architecture. Nature genetics, 22(3), 281-285.
    """
    module_dir = dirname(__file__)
    data = np.loadtxt(join(module_dir, 'data', 'yeast_tavazoie', 'yeast_tavazoie.txt'), dtype=np.double)
    genes = np.loadtxt(join(module_dir, 'data', 'yeast_tavazoie', 'genes_yeast_tavazoie.txt'), dtype=np.character)
    return pd.DataFrame(data, index=genes) 

Example 2

def RATWriteArray(rat, array, field, start=0):
    """
    Pure Python implementation of writing a chunk of the RAT
    from a numpy array. Type of array is coerced to one of the types
    (int, double, string) supported. Called from RasterAttributeTable.WriteArray
    """
    if array is None:
        raise ValueError("Expected array of dim 1")

    # if not the array type convert it to handle lists etc
    if not isinstance(array, numpy.ndarray):
        array = numpy.array(array)

    if array.ndim != 1:
        raise ValueError("Expected array of dim 1")

    if (start + array.size) > rat.GetRowCount():
        raise ValueError("Array too big to fit into RAT from start position")

    if numpy.issubdtype(array.dtype, numpy.integer):
        # is some type of integer - coerce to standard int
        # TODO: must check this is fine on all platforms
        # confusingly numpy.int 64 bit even if native type 32 bit
        array = array.astype(numpy.int32)
    elif numpy.issubdtype(array.dtype, numpy.floating):
        # is some type of floating point - coerce to double
        array = array.astype(numpy.double)
    elif numpy.issubdtype(array.dtype, numpy.character):
        # cast away any kind of Unicode etc
        array = array.astype(numpy.character)
    else:
        raise ValueError("Array not of a supported type (integer, double or string)")

    return RATValuesIONumPyWrite(rat, field, start, array) 

Example 3

def __getitem__(self, obj):
                val = numpy.ndarray.__getitem__(self, obj)
                if isinstance(val, numpy.character):
                    temp = val.rstrip()
                    if numpy.char._len(temp) == 0:
                        val = ''
                    else:
                        val = temp
                return val 

Example 4

def _collect_attrs(self, name, obj):
        """Collect all the attributes for the provided file object.
        """
        for key in obj.ncattrs():
            value = getattr(obj, key)
            value = np.squeeze(value)
            if issubclass(value.dtype.type, str) or np.issubdtype(value.dtype, np.character):
                self.file_content["{}/attr/{}".format(name, key)] = str(value)
            else:
                self.file_content["{}/attr/{}".format(name, key)] = value 

Example 5

def normalize_attr_values(a: Any) -> np.ndarray:
	"""
	Take all kinds of input values and validate/normalize them.
	
	Args:
		a	List, tuple, np.matrix, np.ndarray or sparse matrix
			Elements can be strings, numbers or bools
	
	Returns
		a_normalized    An np.ndarray with elements either float64 or unicode string objects
	
	Remarks:
		This method should be used to prepare the values to be stored in the HDF5 file. You should not
		return the values to the caller; for that, use materialize_attr_values()
	"""
	scalar = False
	if np.isscalar(a):
		a = np.array([a])
		scalar = True
	arr = normalize_attr_array(a)
	if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating):
		pass  # We allow all these types
	elif np.issubdtype(arr.dtype, np.character) or np.issubdtype(arr.dtype, np.object_):
		arr = normalize_attr_strings(arr)
	elif np.issubdtype(arr.dtype, np.bool_):
		arr = arr.astype('ubyte')
	if scalar:
		return arr[0]
	else:
		return arr 
点赞