The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def load_yeast_tavazoie(): """Load and return the yeast dataset (Tavazoie et al., 2000) used in the original biclustering study of Cheng and Church (2000) as a pandas.DataFrame. All elements equal to -1 are missing values. This dataset is freely available in http://arep.med.harvard.edu/biclustering/. Reference --------- Cheng, Y., & Church, G. M. (2000). Biclustering of expression data. In Ismb (Vol. 8, No. 2000, pp. 93-103). Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., & Church, G. M. (1999). Systematic determination of genetic network architecture. Nature genetics, 22(3), 281-285. """ module_dir = dirname(__file__) data = np.loadtxt(join(module_dir, 'data', 'yeast_tavazoie', 'yeast_tavazoie.txt'), dtype=np.double) genes = np.loadtxt(join(module_dir, 'data', 'yeast_tavazoie', 'genes_yeast_tavazoie.txt'), dtype=np.character) return pd.DataFrame(data, index=genes)
Example 2
def RATWriteArray(rat, array, field, start=0): """ Pure Python implementation of writing a chunk of the RAT from a numpy array. Type of array is coerced to one of the types (int, double, string) supported. Called from RasterAttributeTable.WriteArray """ if array is None: raise ValueError("Expected array of dim 1") # if not the array type convert it to handle lists etc if not isinstance(array, numpy.ndarray): array = numpy.array(array) if array.ndim != 1: raise ValueError("Expected array of dim 1") if (start + array.size) > rat.GetRowCount(): raise ValueError("Array too big to fit into RAT from start position") if numpy.issubdtype(array.dtype, numpy.integer): # is some type of integer - coerce to standard int # TODO: must check this is fine on all platforms # confusingly numpy.int 64 bit even if native type 32 bit array = array.astype(numpy.int32) elif numpy.issubdtype(array.dtype, numpy.floating): # is some type of floating point - coerce to double array = array.astype(numpy.double) elif numpy.issubdtype(array.dtype, numpy.character): # cast away any kind of Unicode etc array = array.astype(numpy.character) else: raise ValueError("Array not of a supported type (integer, double or string)") return RATValuesIONumPyWrite(rat, field, start, array)
Example 3
def __getitem__(self, obj): val = numpy.ndarray.__getitem__(self, obj) if isinstance(val, numpy.character): temp = val.rstrip() if numpy.char._len(temp) == 0: val = '' else: val = temp return val
Example 4
def _collect_attrs(self, name, obj): """Collect all the attributes for the provided file object. """ for key in obj.ncattrs(): value = getattr(obj, key) value = np.squeeze(value) if issubclass(value.dtype.type, str) or np.issubdtype(value.dtype, np.character): self.file_content["{}/attr/{}".format(name, key)] = str(value) else: self.file_content["{}/attr/{}".format(name, key)] = value
Example 5
def normalize_attr_values(a: Any) -> np.ndarray: """ Take all kinds of input values and validate/normalize them. Args: a List, tuple, np.matrix, np.ndarray or sparse matrix Elements can be strings, numbers or bools Returns a_normalized An np.ndarray with elements either float64 or unicode string objects Remarks: This method should be used to prepare the values to be stored in the HDF5 file. You should not return the values to the caller; for that, use materialize_attr_values() """ scalar = False if np.isscalar(a): a = np.array([a]) scalar = True arr = normalize_attr_array(a) if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating): pass # We allow all these types elif np.issubdtype(arr.dtype, np.character) or np.issubdtype(arr.dtype, np.object_): arr = normalize_attr_strings(arr) elif np.issubdtype(arr.dtype, np.bool_): arr = arr.astype('ubyte') if scalar: return arr[0] else: return arr