The following are code examples for showing how to use . They are extracted from open source Python projects. You can vote up the examples you like or vote down the exmaples you don’t like. You can also save this page to your account.
Example 1
def _get_colors(self, f): ''' Misterious function, ask @inconvergent :) ''' scale = 1./255. im = Image.open(f) w, h = im.size rgbim = im.convert('RGB') res = [] for i in xrange(0, w): for j in xrange(0, h): r, g, b = rgbim.getpixel((i, j)) res.append((r*scale, g*scale, b*scale)) np.shuffle(res) self.colors = res self.n_colors = len(res)
Example 2
def _get_colors(self, f): ''' Misterious function, ask @inconvergent :) ''' scale = 1./255. im = Image.open(f) w, h = im.size rgbim = im.convert('RGB') res = [] for i in xrange(0, w): for j in xrange(0, h): r, g, b = rgbim.getpixel((i, j)) res.append((r*scale, g*scale, b*scale)) np.shuffle(res) self.colors = res self.n_colors = len(res)
Example 3
def __next__(self): if self._train_location >= len(self._train_indices) or self._test_location >= len(self._test_indices): # Reset: np.shuffle(self._train_indices) np.shuffle(self._test_indices) self._train_location = 0 self._test_location = 0 raise StopIteration() return self.get_train_test_batch()
Example 4
def sample(self, n=1): counts = np.random.multinomial(n, self.weights, size=1) samples = np.empty((n, len(self.means[0]))) k = 0 for i in range(len(self.means)): for j in range(len(self.means[i])): samples[k:k+counts[i], j] = stats.norm.rvs(loc=self.means[i, j], scale=self.stds[i, j], size=counts[i]) k += counts[i] np.shuffle(samples) return samples
Example 5
def sample(self, n=1): counts = np.random.multinomial(n, self.weights, size=1) samples = np.empty((n, len(self.means[0]))) j = 0 for i in range(len(self.means)): samples[j:j+counts[i]] = stats.multivariate_normal.rvs(mean=self.means[i], cov=self.covs[i], size=counts[i]) j += counts[i] np.shuffle(samples) return samples
Example 6
def _split_into_groups(iterable, ngroups=-1, fractions=None, shuffle=True): if shuffle: iterable = np.copy(iterable) np.shuffle(iterable) start_idxs, end_idxs = _group_start_end_idxs(len(iterable), ngroups, fractions) return [iterable[start:end] for start, end in zip(start_idxs, end_idxs)]
Example 7
def __init__(self, hdf_filename, test_pct=0.25, neg_bias=0.5, batch_size=64, normalize=False, malignancy_to_class=None, window_normalize=False): neg_bias = 0.5 if neg_bias is None else neg_bias self._hdf_filename = hdf_filename self._neg_bias = neg_bias self._test_pct = test_pct self._batch_size = batch_size self._test_location = 0 self._train_location = 0 self._test_indices = [] self._train_indices = [] self._malignancy_to_class = malignancy_to_class self._normalize = normalize self._Xmin = None self._Xmax = None self._window_normalize = window_normalize if malignancy_to_class is not None and len(malignancy_to_class) != 6: raise Exception("malignancy_class mapping must contain exactly 6 values, one for each malignancy level 0 - 5") # Open the hdf file self._hdf_file = h5py.File(self._hdf_filename, 'r') # Get info on classes and makeup of the dataset by examining the y values (classes): y = self._hdf_file['nodule_classes'].value if self._malignancy_to_class is not None: if malignancy_to_class is not None: mal = self._hdf_file['nodule_malignancy'] for i in range(len(y)): y[i] = [malignancy_to_class[int(mal[i])]] if self._normalize: self._Xmin = self._hdf_file['nodule_pixel_min'] self._Xmax = self._hdf_file['nodule_pixel_max'] n_examples = len(y) negatives = [i for i in range(n_examples) if y[i] == [0]] positives = [i for i in range(n_examples) if y[i][0] > 0] neg_count = len(negatives) pos_count = len(positives) n_examples = neg_count + pos_count neg_goal = int(min(neg_count, round(neg_bias * n_examples))) pos_goal = n_examples - neg_goal if pos_goal > pos_count: neg_goal = int(round(pos_count * (1-neg_bias+0.5))) pos_goal = pos_count # print("Before: neg count: {0}; goal: {1} - pos count: {2}; goal: {3}".format(neg_count, neg_goal, pos_count, pos_goal)) # randomly choose neg_goal negatives and pos_goal positives: selected_indices = list(np.random.choice(negatives, size=(min(neg_count,neg_goal)), replace=False)) selected_indices.extend(list(np.random.choice(positives, size=(min(pos_count, pos_goal)), replace=False))) # print("n examples: {0}".format(len(selected_indices))) n_examples = len(selected_indices) np.random.shuffle(selected_indices) test_examples = int(round(test_pct * n_examples)) # print("test_examples: {0}".format(test_examples)) self._test_indices = selected_indices[0:test_examples] self._train_indices = selected_indices[test_examples:]