JAVA技巧(java源码分析:Arrays.sort)

仔细分析java的Arrays.sort(version 1.71, 04/21/06)后发现,java对primitive(int,float等原型数据)数组采用快速排序,对Object对象数组采用归并排序。

  对这一区别,sun在<<The Java Tutorial>>中做出的解释是:

  The sort operation uses a slightly optimized merge sort algorithm that is fast and stable:

   * Fast: It is guaranteed to run in n log(n) time and runs substantially faster on nearly sorted lists. Empirical tests showed it to be as fast as a highly optimized quicksort. A quicksort is generally considered to be faster than a merge sort but isn’t stable and doesn’t guarantee n log(n) performance.

  * Stable: It doesn’t reorder equal elements. This is important if you sort the same list repeatedly on different attributes. If a user of a mail program sorts the inbox by mailing date and then sorts it by sender, the user naturally expects that the now-contiguous list of messages from a given sender will (still) be sorted by mailing date. This is guaranteed only if the second sort was stable.

  也就是说,优化的归并排序既快速(nlog(n))又稳定。

  对于对象的排序,稳定性很重要。比如成绩单,一开始可能是按人员的学号顺序排好了的,现在让我们用成绩排,那么你应该保证,本来张三在李四前面,即使他们成绩相同,张三不能跑到李四的后面去。

  而快速排序是不稳定的,而且最坏情况下的时间复杂度是O(n^2)。

  另外,对象数组中保存的只是对象的引用,这样多次移位并不会造成额外的开销,但是,对象数组对比较次数一般比较敏感,有可能对象的比较比单纯数的比较开销大很多。归并排序在这方面比快速排序做得更好,这也是选择它作为对象排序的一个重要原因之一。

  排序优化:实现中快排和归并都采用递归方式,而在递归的底层,也就是待排序的数组长度小于7时, 直接使用冒泡排序,而不再递归下去。

  分析:长度为6的数组冒泡排序总比较次数最多也就1+2+3+4+5+6=21次,最好情况下只有6次比较。而快排或归并涉及到递归调用等的开销,其时间效率在n较小时劣势就凸显了,因此这里采用了冒泡排序,这也是对快速排序极重要的优化。

  /*快速排序*/

  private static void sort1(int x[], int off, int len) {

  // Insertion sort on smallest arrays

  if (len < 7) {

  for (int i=off; i<len+off; i++)

  for (int j=i; j>off && x[j-1]>x[j]; j–)

  swap(x, j, j-1);

  return;

  }

  // Choose a partition element, v

  int m = off + (len >> 1); // Small arrays, middle element

  if (len > 7) {

  int l = off;

  int n = off + len – 1;

  if (len > 40) { // Big arrays, pseudomedian of 9

  int s = len/8;

  l = med3(x, l, l+s, l+2*s);//取后三个参数中的中间值

  m = med3(x, m-s, m, m+s);

  n = med3(x, n-2*s, n-s, n);

  }

  m = med3(x, l, m, n); // Mid-size, med of 3

  }

  int v = x[m];

  // Establish Invariant: v* (<v)* (>v)* v*

  int a = off, b = a, c = off + len – 1, d = c;

  while(true) {

  while (b <= c && x[b] <= v) {

  if (x[b] == v)

  swap(x, a++, b);

  b++;

  }

  while (c >= b && x[c] >= v) {

  if (x[c] == v)

  swap(x, c, d–);

  c–;

  }

  if (b > c)

  break;

  swap(x, b++, c–);

  }

  // Swap partition elements back to middle

  int s, n = off + len;

  s = Math.min(a-off, b-a ); vecswap(x, off, b-s, s);

  s = Math.min(d-c, n-d-1); vecswap(x, b, n-s, s);

  // Recursively sort non-partition-elements

  if ((s = b-a) > 1)

  sort1(x, off, s);

  if ((s = d-c) > 1)

  sort1(x, n-s, s);

  }

  /*归并排序*/

  private static void mergeSort(Object[] src,

  Object[] dest,

  int low,

  int high,

  int off) {

  int length = high – low;

  // Insertion sort on smallest arrays

  if (length < INSERTIONSORT_THRESHOLD) {

  for (int i=low; i<high; i++)

  for (int j=i; j>low &&

  ((Comparable) dest[j-1]).compareTo(dest[j])>0; j–)

  swap(dest, j, j-1);

  return;

  }

  // Recursively sort halves of dest into src

  int destLow = low;

  int destHigh = high;

  low += off;

  high += off;

  int mid = (low + high) >>> 1;

  mergeSort(dest, src, low, mid, -off);

  mergeSort(dest, src, mid, high, -off);

  // If list is already sorted, just copy from src to dest. This is an

  // optimization that results in faster sorts for nearly ordered lists.

  if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {

  System.arraycopy(src, low, dest, destLow, length);

  return;

  }

  // Merge sorted halves (now in src) into dest

  for(int i = destLow, p = low, q = mid; i < destHigh; i++) {

  if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)

  dest[i] = src[p++];

  else

  dest[i] = src[q++];

  }

  }

    原文作者:java源码分析
    原文地址: http://www.cnblogs.com/ghost-draw-sign/articles/1800734.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞