AQS内部采用CLH队列。CLH队列是由节点组成。内部的Node节点包含的状态有
static final int CANCELLED = 1;
static final int SIGNAL = –1;
static final int CONDITION = –2;
static final int PROPAGATE = –3;
其中取消状态表示任务的取消,SIGNAL状态表示后续节点需要唤醒,CONDITION表示等待状态,PROPAGRATE表示的是传播状态通常用于共享锁的释放。初始节点的状态为0。
AQS中比较重要的操作包括:
public final void acquire(int arg);
public final void acquireInterruptibly(int arg);
public final void acquireShared(int arg);
public final void acquireSharedInterruptibly(int arg);
protected boolean tryAcquire(int arg);
protected int tryAcquireShared(int arg);
public final boolean tryAcquireNanos(int arg, long nanosTimeout) throws InterruptedException;
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout) throws InterruptedException;
其中:public final void acquire(int arg) {
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
其中tryAcquire方法为抽象方法。不同的子类有不同的实现方式。AQS中该方法的实现知识抛出了一个异常。
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;//标记是否成功拿到资源
try {
boolean interrupted = false;//标记等待过程中是否被中断过
//自旋的过程
for (;;) {
final Node p = node.predecessor();//拿到前驱
//如果前驱是head,即该结点已成老二,那么便有资格去尝试获取资源(可能是老大释放完资源唤醒自己的,当然也可能被interrupt了)。
if (p == head && tryAcquire(arg)) {
setHead(node);//拿到资源后,将head指向该结点。所以head所指的标杆结点,就是当前获取到资源的那个结点或null。
p.next = null; // setHead中node.prev已置为null,此处再将head.next置为null,就是为了方便GC回收以前的head结点。也就意味着之前拿完资源的结点出队了!
failed = false;
return interrupted;//返回等待过程中是否被中断过
}
//如果自己可以休息了,就进入waiting状态,直到被unpark()
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;//如果等待过程中被中断过,哪怕只有那么一次,就将interrupted标记为true
}
} finally {
if (failed)
cancelAcquire(node);
}
}
可以从该方法中看出。这里会继续尝试去获取一下资源
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;//拿到前驱的状态
if (ws == Node.SIGNAL)
//如果已经告诉前驱拿完号后通知自己一下,那就可以安心休息了
return true;
if (ws > 0) {
/*
* 如果前驱放弃了,那就一直往前找,直到找到最近一个正常等待的状态,并排在它的后边。
* 注意:那些放弃的结点,由于被自己“加塞”到它们前边,它们相当于形成一个无引用链,稍后就会被保安大叔赶走了(GC回收)!
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
//如果前驱正常,那就把前驱的状态设置成SIGNAL,告诉它拿完号后通知自己一下。有可能失败,人家说不定刚刚释放完呢!
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
在该方法中会检测当前节点中前面的节点是否有CANCELLED状态的如果有。待会儿后续的操作这些节点会被GC回收。
如果一切正常当前节点的前一个节点会被设置为SIGNAL状态。
1 private final boolean parkAndCheckInterrupt() {
2 LockSupport.park(this);//调用park()使线程进入waiting状态
3 return Thread.interrupted();//如果被唤醒,查看自己是不是被中断的。
4 }
线程进入waiting状态。线程被唤醒的方式有被unpark和被中断。
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;//找到头结点
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);//唤醒等待队列里的下一个线程
return true;
}
return false;
}
这里tryRelease也是一个抽象方法不同的子类有不同的实现。
private void unparkSuccessor(Node node) 内部首先会设置当前节点的状态为初始状态。同时找到一个有效的后继节点的状态小于0的进行节点的释放。 LockSupport.unpark(s.thread);//唤醒对应的线程。