java 集合类源码分析--arrayList

 ArrayList就是传说中的动态数组,就是Array的复杂版本,它提供了如下一些好处:动态的增加和减少元素、灵活的设置数组的大小……

    认真阅读本文,我相信一定会对你有帮助。比如为什么ArrayList里面提供了一个受保护的removeRange方法?提供了其他没有被调用过的私有方法?

    首先看到对ArrayList的定义:

public class ArrayList<E> extends AbstractList<E>  implements List<E>, RandomAccess, Cloneable, java.io.Serializable  

 从ArrayList<E>可以看出它是支持泛型的,它继承自AbstractList,实现了ListRandomAccessCloneablejava.io.Serializable接口。

    AbstractList提供了List接口的默认实现(个别方法为抽象方法)。

    List接口定义了列表必须实现的方法。

    RandomAccess是一个标记接口,接口内没有定义任何内容。

    实现了Cloneable接口的类,可以调用Object.clone方法返回该对象的浅拷贝。

    通过实现 java.io.Serializable 接口以启用其序列化功能。未实现此接口的类将无法使其任何状态序列化或反序列化。序列化接口没有方法或字段,仅用于标识可序列化的语义。

    ArrayList的属性

    ArrayList定义只定义类两个私有属性:

/** 

      * The array buffer into which the elements of the ArrayList are stored. 

      * The capacity of the ArrayList is the length of this array buffer. 

      */  

     private transient Object[] elementData;  

     /** 

      * The size of the ArrayList (the number of elements it contains). 

      * @serial 

      */  

     private int size;  

  

 

[java] view plain copy

 

 

很容易理解,elementData存储ArrayList内的元素,size表示它包含的元素的数量。  

  

  有个关键字需要解释:transient。  

  

  Javaserialization提供了一种持久化对象实例的机制。当持久化对象时,可能有一个特殊的对象数据成员,我们不想用serialization机制来保存它。为了在一个特定对象的一个域上关闭serialization,可以在这个域前加上关键字transient。  

ansientJava语言的关键字,用来表示一个域不是该对象串行化的一部分。当一个对象被串行化的时候,transient型变量的值不包括在串行化的表示中,然而非transient型的变量是被包括进去的。  

  

  有点抽象,看个例子应该能明白。  

public class UserInfo implements Serializable {  

     private static final long serialVersionUID = 996890129747019948L;  

     private String name;  

     private transient String psw;  

   

     public UserInfo(String name, String psw) {  

         this.name = name;  

         this.psw = psw;  

     }  

   

     public String toString() {  

         return "name=" + name + ", psw=" + psw;  

     }  

 }  

   

 public class TestTransient {  

     public static void main(String[] args) {  

         UserInfo userInfo = new UserInfo("张三", "123456");  

         System.out.println(userInfo);  

         try {  

             // 序列化,被设置为transient的属性没有被序列化  

             ObjectOutputStream o = new ObjectOutputStream(new FileOutputStream(  

                     "UserInfo.out"));  

             o.writeObject(userInfo);  

             o.close();  

         } catch (Exception e) {  

             // TODO: handle exception  

             e.printStackTrace();  

         }  

         try {  

             // 重新读取内容  

             ObjectInputStream in = new ObjectInputStream(new FileInputStream(  

                     "UserInfo.out"));  

             UserInfo readUserInfo = (UserInfo) in.readObject();  

             //读取后psw的内容为null  

             System.out.println(readUserInfo.toString());  

         } catch (Exception e) {  

             // TODO: handle exception  

             e.printStackTrace();  

         }  

     }  

 }  

  

 被标记为transient的属性在对象被序列化的时候不会被保存。

    接着回到ArrayList的分析中……

    ArrayList的构造方法

    看完属性看构造方法。ArrayList提供了三个构造方法:

/** 

      * Constructs an empty list with the specified initial capacity. 

      */  

     public ArrayList(int initialCapacity) {  

     super();  

         if (initialCapacity < 0)  

             throw new IllegalArgumentException("Illegal Capacity: "+  

                                                initialCapacity);  

     this.elementData = new Object[initialCapacity];  

     }  

   

     /** 

      * Constructs an empty list with an initial capacity of ten. 

      */  

     public ArrayList() {  

     this(10);  

     }  

   

     /** 

      * Constructs a list containing the elements of the specified 

      * collection, in the order they are returned by the collection's 

      * iterator. 

      */  

     public ArrayList(Collection<? extends E> c) {  

     elementData = c.toArray();  

     size = elementData.length;  

     // c.toArray might (incorrectly) not return Object[] (see 6260652)  

     if (elementData.getClass() != Object[].class)  

         elementData = Arrays.copyOf(elementData, size, Object[].class);  

     }  

  

   第一个构造方法使用提供的initialCapacity来初始化elementData数组的大小。第二个构造方法调用第一个构造方法并传入参数10,即默认elementData数组的大小为10。第三个构造方法则将提供的集合转成数组返回给elementData(返回若不是Object[]将调用Arrays.copyOf方法将其转为Object[])。

    ArrayList的其他方法

    add(E e)

    add(E e)都知道是在尾部添加一个元素,如何实现的呢?

public boolean add(E e) {  

    ensureCapacity(size + 1);  // Increments modCount!!  

    elementData[size++] = e;  

    return true;  

    }  

 书上都说ArrayList是基于数组实现的,属性中也看到了数组,具体是怎么实现的呢?比如就这个添加元素的方法,如果数组大,则在将某个位置的值设置为指定元素即可,如果数组容量不够了呢?

    看到add(E e)中先调用了ensureCapacity(size+1)方法,之后将元素的索引赋给elementData[size],而后size自增。例如初次添加时,size0addelementData[0]赋值为e,然后size设置为1(类似执行以下两条语句elementData[0]=e;size=1)。将元素的索引赋给elementData[size]不是会出现数组越界的情况吗?这里关键就在ensureCapacity(size+1)中了。

    根据ensureCapacity的方法名可以知道是确保容量用的。ensureCapacity(size+1)后面的注释可以明白是增加modCount的值(加了俩感叹号,应该蛮重要的,来看看)。

 

/** 

      * Increases the capacity of this <tt>ArrayList</tt> instance, if 

      * necessary, to ensure that it can hold at least the number of elements 

      * specified by the minimum capacity argument. 

      * 

      * @param   minCapacity   the desired minimum capacity 

      */  

     public void ensureCapacity(int minCapacity) {  

     modCount++;  

     int oldCapacity = elementData.length;  

     if (minCapacity > oldCapacity) {  

         Object oldData[] = elementData;  

         int newCapacity = (oldCapacity * 3)/2 + 1;  

             if (newCapacity < minCapacity)  

         newCapacity = minCapacity;  

             // minCapacity is usually close to size, so this is a win:  

             elementData = Arrays.copyOf(elementData, newCapacity);  

     }  

     }  

  

The number of times this list has been structurally modified.

    这是对modCount的解释,意为记录list结构被改变的次数(观察源码可以发现每次调用ensureCapacoty方法,modCount的值都将增加,但未必数组结构会改变,所以感觉对modCount的解释不是很到位)。

    增加modCount之后,判断minCapacity(即size+1)是否大于oldCapacity(即elementData.length),若大于,则调整容量为max((oldCapacity*3)/2+1,minCapacity),调整elementData容量为新的容量,即将返回一个内容为原数组元素,大小为新容量的数组赋给elementData;否则不做操作。

    所以调用ensureCapacity至少将elementData的容量增加的1,所以elementData[size]不会出现越界的情况。

    容量的拓展将导致数组元素的复制,多次拓展容量将执行多次整个数组内容的复制。若提前能大致判断list的长度,调用ensureCapacity调整容量,将有效的提高运行速度。

    可以理解提前分配好空间可以提高运行速度,但是测试发现提高的并不是很大,而且若list原本数据量就不会很大效果将更不明显。

    add(int index, E element)

    add(int index,E element)在指定位置插入元素。

public void add(int index, E element) {  

     if (index > size || index < 0)  

         throw new IndexOutOfBoundsException(  

         "Index: "+index+", Size: "+size);  

   

     ensureCapacity(size+1);  // Increments modCount!!  

     System.arraycopy(elementData, index, elementData, index + 1,  

              size - index);  

     elementData[index] = element;  

     size++;  

     }  

  

   首先判断指定位置index是否超出elementData的界限,之后调用ensureCapacity调整容量(若容量足够则不会拓展),调用System.arraycopyelementDataindex开始的size-index个元素复制到index+1size+1的位置(即index开始的元素都向后移动一个位置),然后将index位置的值指向element。       

    addAll(Collection<? extends E> c)
 

public boolean addAll(Collection<? extends E> c) {  

     Object[] a = c.toArray();  

         int numNew = a.length;  

     ensureCapacity(size + numNew);  // Increments modCount  

         System.arraycopy(a, 0, elementData, size, numNew);  

         size += numNew;  

     return numNew != 0;  

     } 

  

 

  先将集合c转换成数组,根据转换后数组的程度和ArrayListsize拓展容量,之后调用System.arraycopy方法复制元素到elementData的尾部,调整size。根据返回的内容分析,只要集合c的大小不为空,即转换后的数组长度不为0则返回true

   

 addAll(int index,Collection<? extends E> c)

[java] view plain copy

 

 

public boolean addAll(int index, Collection<? extends E> c) {  

     if (index > size || index < 0)  

         throw new IndexOutOfBoundsException(  

         "Index: " + index + ", Size: " + size);  

   

     Object[] a = c.toArray();  

     int numNew = a.length;  

     ensureCapacity(size + numNew);  // Increments modCount  

   

     int numMoved = size - index;  

     if (numMoved > 0)  

         System.arraycopy(elementData, index, elementData, index + numNew,  

                  numMoved);  

   

         System.arraycopy(a, 0, elementData, index, numNew);  

     size += numNew;  

     return numNew != 0;  

     } 

  

 

  先判断index是否越界。其他内容与addAll(Collection<? extends E> c)基本一致,只是复制的时候先将index开始的元素向后移动Xc转为数组后的长度)个位置(也是一个复制的过程),之后将数组内容复制到elementDataindex位置至index+X

    clear()

 

public void clear() {  

     modCount++;  

   

     // Let gc do its work  

     for (int i = 0; i < size; i++)  

         elementData[i] = null;  

   

     size = 0;  

     }  

clear的时候并没有修改elementData的长度(好不容易申请、拓展来的,凭什么释放,留着搞不好还有用呢。这使得确定不再修改list内容之后最好调用trimToSize来释放掉一些空间),只是将所有元素置为nullsize设置为0

    clone()

    返回此 ArrayList 实例的浅表副本。(不复制这些元素本身。) 

 

public Object clone() {  

     try {  

         ArrayList<E> v = (ArrayList<E>) super.clone();  

         v.elementData = Arrays.copyOf(elementData, size);  

         v.modCount = 0;  

         return v;  

     } catch (CloneNotSupportedException e) {  

         // this shouldn’t happen, since we are Cloneable  

         throw new InternalError();  

     }  

     }  

  调用父类的clone方法返回一个对象的副本,将返回对象的elementData数组的内容赋值为原对象elementData数组的内容,将副本的modCount设置为0

    contains(Object)

 

public boolean contains(Object o) {  

     return indexOf(o) >= 0;  

     }  

 indexOf方法返回值与0比较来判断对象是否在list中。接着看indexOf

    indexOf(Object)

[java] view plain copy

 

 

public int indexOf(Object o) {  

     if (o == null) {  

         for (int i = 0; i < size; i++)  

         if (elementData[i]==null)  

             return i;  

     } else {  

         for (int i = 0; i < size; i++)  

         if (o.equals(elementData[i]))  

             return i;  

     }  

     return -1;  

     }  

 

通过遍历elementData数组来判断对象是否在list中,若存在,返回index[0,size-1]),若不存在则返回-1。所以contains方法可以通过indexOf(Object)方法的返回值来判断对象是否被包含在list中。

    既然看了indexOf(Object)方法,接着就看lastIndexOf,光看名字应该就明白了返回的是传入对象在elementData数组中最后出现的index值。

[java] view plain copy

 

 

public int lastIndexOf(Object o) {  

     if (o == null) {  

         for (int i = size-1; i >= 0; i–)  

         if (elementData[i]==null)  

             return i;  

     } else {  

         for (int i = size-1; i >= 0; i–)  

         if (o.equals(elementData[i]))  

             return i;  

     }  

     return -1;  

     }  

采用了从后向前遍历element数组,若遇到Object则返回index值,若没有遇到,返回-1

    get(int index)

    这个方法看着很简单,应该是返回elementData[index]就完了。

[java] view plain copy

 

 

public E get(int index) {  

     RangeCheck(index);  

  

     return (E) elementData[index];  

     }  

但看代码的时候看到调用了RangeCheck方法,而且还是大写的方法,看看究竟有什么内容吧。[java] view plain copy

 

 

/** 

      * Checks if the given index is in range. 

 */  

 private void RangeCheck(int index) {  

     if (index >= size)  

         throw new IndexOutOfBoundsException(  

         “Index: “+index+”, Size: “+size);  

     }  

 

 就是检查一下是不是超出数组界限了,超出了就抛出IndexOutBoundsException异常。为什么要大写呢???

    isEmpty()

    直接返回size是否等于0

    remove(int index)

[java] view plain copy

 

 

public E remove(int index) {  

     RangeCheck(index);  

     modCount++;  

     E oldValue = (E) elementData[index];  

     int numMoved = size – index – 1;  

     if (numMoved > 0)  

         System.arraycopy(elementData, index+1, elementData, index,  

                  numMoved);  

     elementData[–size] = null; // Let gc do its work  

     return oldValue;  

     }  

 

首先是检查范围,修改modCount,保留将要被移除的元素,将移除位置之后的元素向前挪动一个位置,将list末尾元素置空(null),返回被移除的元素。

    remove(Object o)

[java] view plain copy

 

 

public boolean remove(Object o) {  

     if (o == null) {  

             for (int index = 0; index < size; index++)  

         if (elementData[index] == null) {  

             fastRemove(index);  

             return true;  

         }  

     } else {  

         for (int index = 0; index < size; index++)  

         if (o.equals(elementData[index])) {  

             fastRemove(index);  

             return true;  

         }  

         }  

     return false;  

     }  

  首先通过代码可以看到,当移除成功后返回true,否则返回falseremove(Object o)中通过遍历element寻找是否存在传入对象,一旦找到就调用fastRemove移除对象。为什么找到了元素就知道了index,不通过remove(index)来移除元素呢?因为fastRemove跳过了判断边界的处理,因为找到元素就相当于确定了index不会超过边界,而且fastRemove并不返回被移除的元素。下面是fastRemove的代码,基本和remove(index)一致。[java] view plain copy

 

 

private void fastRemove(int index) {  

         modCount++;  

         int numMoved = size – index – 1;  

         if (numMoved > 0)  

             System.arraycopy(elementData, index+1, elementData, index,  

                              numMoved);  

         elementData[–size] = null; // Let gc do its work  

     }  

  removeRange(int fromIndex,int toIndex)

[java] view plain copy

 

 

protected void removeRange(int fromIndex, int toIndex) {  

     modCount++;  

     int numMoved = size – toIndex;  

         System.arraycopy(elementData, toIndex, elementData, fromIndex,  

                          numMoved);  

   

     // Let gc do its work  

     int newSize = size – (toIndex-fromIndex);  

     while (size != newSize)  

         elementData[–size] = null;  

     }  

执行过程是将elementDatatoIndex位置开始的元素向前移动到fromIndex,然后将toIndex位置之后的元素全部置空顺便修改size

    这个方法是protected,及受保护的方法,为什么这个方法被定义为protected呢?

    这是一个解释,但是可能不容易看明白。     先看下面这个例子

[java] view plain copy

 

 

ArrayList<Integer> ints = new ArrayList<Integer>(Arrays.asList(0, 1, 2,  

                 3, 4, 5, 6));  

         // fromIndex low endpoint (inclusive) of the subList  

         // toIndex high endpoint (exclusive) of the subList  

        ints.subList(2, 4).clear();  

         System.out.println(ints);  

 输出结果是[0, 1, 4, 5, 6],结果是不是像调用了removeRange(int fromIndex,int toIndex)!哈哈哈,就是这样的。但是为什么效果相同呢?是不是调用了removeRange(int fromIndex,int toIndex)呢?set(int index,E element)

 

public E set(int index, E element) {  

     RangeCheck(index);  

   

     E oldValue = (E) elementData[index];  

     elementData[index] = element;  

     return oldValue;  

     }  

  首先检查范围,用新元素替换旧元素并返回旧元素。

    size()

    size()方法直接返回size

    toArray()

[java] view plain copy

 

 

public Object[] toArray() {  

         return Arrays.copyOf(elementData, size);  

     }  

 调用Arrays.copyOf将返回一个数组,数组内容是sizeelementData的元素,即拷贝elementData0size-1位置的元素到新数组并返回。

    toArray(T[] a)

[java] view plain copy

 

 

public <T> T[] toArray(T[] a) {  

         if (a.length < size)  

             // Make a new array of a’s runtime type, but my contents:  

             return (T[]) Arrays.copyOf(elementData, size, a.getClass());  

     System.arraycopy(elementData, 0, a, 0, size);  

         if (a.length > size)  

             a[size] = null;  

         return a;  

     }  

 如果传入数组的长度小于size,返回一个新的数组,大小为size,类型与传入数组相同。所传入数组长度与size相等,则将elementData复制到传入数组中并返回传入的数组。若传入数组长度大于size,除了复制elementData外,还将把返回数组的第size个元素置为空。

    trimToSize()

[java] view plain copy

 

 

public void trimToSize() {  

     modCount++;  

     int oldCapacity = elementData.length;  

     if (size < oldCapacity) {  

             elementData = Arrays.copyOf(elementData, size);  

     }  

     }  

由于elementData的长度会被拓展,size标记的是其中包含的元素的个数。所以会出现size很小但elementData.length很大的情况,将出现空间的浪费。trimToSize将返回一个新的数组给elementData,元素内容保持不变,lengthsize相同,节省空间。

     学习Java最好的方式还必须是读源码。读完源码你才会发现这东西为什么是这么玩的,有哪些限制,关键点在哪里等等。而且这些源码都是大牛们写的,你能从中学习到很多。 

解释下fail-fast以及fail-safe

在我们详细讨论这两种机制的区别之前,首先得先了解并发修改。

1.什么是同步修改?

当一个或多个线程正在遍历一个集合Collection,此时另一个线程修改了这个集合的内容(添加,删除或者修改)。这就是并发修改

2.什么是 fail-fast 机制?

fail-fast机制在遍历一个集合时,当集合结构被修改,会抛出Concurrent Modification Exception

fail-fast会在以下两种情况下抛出ConcurrentModificationException

1)单线程环境

集合被创建后,在遍历它的过程中修改了结构,比如iteratorremove方法。

2)多线程环境

当一个线程在遍历这个集合,而另一个线程对这个集合的结构进行了修改。

 

注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误的做法:迭代器的快速失败行为应该仅用于检测 bug

3. fail-fast机制是如何检测的?

迭代器在遍历过程中是直接访问内部数据的,因此内部的数据在遍历的过程中无法被修改。为了保证不被修改,迭代器内部维护了一个标记 “mode” ,当集合结构改变(添加删除或者修改),标记“mode”会被修改,而迭代器每次的hasNext()next()方法都会检查该“mode”是否被改变,当检测到被修改时,抛出Concurrent Modification Exception

。下面看看ArrayList迭代器部分的源码

4. fail-safe机制

fail-safe任何对集合结构的修改都会在一个复制的集合上进行修改,因此不会抛出ConcurrentModificationException

fail-safe机制有两个问题

1)需要复制集合,产生大量的无效对象,开销大

2)无法保证读取的数据是目前原始数据结构中的数据。

 

 

Fail Fast Iterator

Fail Safe Iterator

Throw ConcurrentModification Exception

Yes

No

Clone object

No

Yes

Memory Overhead

No

Yes

Examples

HashMap,Vector,ArrayList,HashSet

CopyOnWriteArrayList,
ConcurrentHashMap

 

 

 

 ArrayList就是传说中的动态数组,就是Array的复杂版本,它提供了如下一些好处:动态的增加和减少元素、灵活的设置数组的大小……

    认真阅读本文,我相信一定会对你有帮助。比如为什么ArrayList里面提供了一个受保护的removeRange方法?提供了其他没有被调用过的私有方法?

    首先看到对ArrayList的定义:

[java] view plain copy

 

 

public class ArrayList<E> extends AbstractList<E>  implements List<E>, RandomAccess, Cloneable, java.io.Serializable  

 从ArrayList<E>可以看出它是支持泛型的,它继承自AbstractList,实现了ListRandomAccessCloneablejava.io.Serializable接口。

    AbstractList提供了List接口的默认实现(个别方法为抽象方法)。

    List接口定义了列表必须实现的方法。

    RandomAccess是一个标记接口,接口内没有定义任何内容。

    实现了Cloneable接口的类,可以调用Object.clone方法返回该对象的浅拷贝。

    通过实现 java.io.Serializable 接口以启用其序列化功能。未实现此接口的类将无法使其任何状态序列化或反序列化。序列化接口没有方法或字段,仅用于标识可序列化的语义。

    ArrayList的属性

    ArrayList定义只定义类两个私有属性:

[java] view plain copy

 

 

/** 

      * The array buffer into which the elements of the ArrayList are stored. 

      * The capacity of the ArrayList is the length of this array buffer. 

      */  

     private transient Object[] elementData;  

   

     /** 

      * The size of the ArrayList (the number of elements it contains). 

      * 

      * @serial 

      */  

     private int size;  

 

[java] view plain copy

 

 

很容易理解,elementData存储ArrayList内的元素,size表示它包含的元素的数量。  

  

  有个关键字需要解释:transient。  

  

  Javaserialization提供了一种持久化对象实例的机制。当持久化对象时,可能有一个特殊的对象数据成员,我们不想用serialization机制来保存它。为了在一个特定对象的一个域上关闭serialization,可以在这个域前加上关键字transient。  

ansientJava语言的关键字,用来表示一个域不是该对象串行化的一部分。当一个对象被串行化的时候,transient型变量的值不包括在串行化的表示中,然而非transient型的变量是被包括进去的。  

  

  有点抽象,看个例子应该能明白。  

 

[java] view plain copy

 

 

public class UserInfo implements Serializable {  

     private static final long serialVersionUID = 996890129747019948L;  

     private String name;  

     private transient String psw;  

   

     public UserInfo(String name, String psw) {  

         this.name = name;  

         this.psw = psw;  

     }  

   

     public String toString() {  

         return “name=” + name + “, psw=” + psw;  

     }  

 }  

   

 public class TestTransient {  

     public static void main(String[] args) {  

         UserInfo userInfo = new UserInfo(“张三“, “123456”);  

         System.out.println(userInfo);  

         try {  

             // 序列化,被设置为transient的属性没有被序列化  

             ObjectOutputStream o = new ObjectOutputStream(new FileOutputStream(  

                     “UserInfo.out”));  

             o.writeObject(userInfo);  

             o.close();  

         } catch (Exception e) {  

             // TODO: handle exception  

             e.printStackTrace();  

         }  

         try {  

             // 重新读取内容  

             ObjectInputStream in = new ObjectInputStream(new FileInputStream(  

                     “UserInfo.out”));  

             UserInfo readUserInfo = (UserInfo) in.readObject();  

             //读取后psw的内容为null  

             System.out.println(readUserInfo.toString());  

         } catch (Exception e) {  

             // TODO: handle exception  

             e.printStackTrace();  

         }  

     }  

 }  

 被标记为transient的属性在对象被序列化的时候不会被保存。

    接着回到ArrayList的分析中……

    ArrayList的构造方法

    看完属性看构造方法。ArrayList提供了三个构造方法:

[java] view plain copy

 

 

/** 

      * Constructs an empty list with the specified initial capacity. 

      */  

     public ArrayList(int initialCapacity) {  

     super();  

         if (initialCapacity < 0)  

             throw new IllegalArgumentException(“Illegal Capacity: “+  

                                                initialCapacity);  

     this.elementData = new Object[initialCapacity];  

     }  

   

     /** 

      * Constructs an empty list with an initial capacity of ten. 

      */  

     public ArrayList() {  

     this(10);  

     }  

   

     /** 

      * Constructs a list containing the elements of the specified 

      * collection, in the order they are returned by the collection’s 

      * iterator. 

      */  

     public ArrayList(Collection<? extends E> c) {  

     elementData = c.toArray();  

     size = elementData.length;  

     // c.toArray might (incorrectly) not return Object[] (see 6260652)  

     if (elementData.getClass() != Object[].class)  

         elementData = Arrays.copyOf(elementData, size, Object[].class);  

     }  

   第一个构造方法使用提供的initialCapacity来初始化elementData数组的大小。第二个构造方法调用第一个构造方法并传入参数10,即默认elementData数组的大小为10。第三个构造方法则将提供的集合转成数组返回给elementData(返回若不是Object[]将调用Arrays.copyOf方法将其转为Object[])。

    ArrayList的其他方法

    add(E e)

    add(E e)都知道是在尾部添加一个元素,如何实现的呢?

public boolean add(E e) {  

    ensureCapacity(size + 1);  // Increments modCount!!  

    elementData[size++] = e;  

    return true;  

    }  

 书上都说ArrayList是基于数组实现的,属性中也看到了数组,具体是怎么实现的呢?比如就这个添加元素的方法,如果数组大,则在将某个位置的值设置为指定元素即可,如果数组容量不够了呢?

    看到add(E e)中先调用了ensureCapacity(size+1)方法,之后将元素的索引赋给elementData[size],而后size自增。例如初次添加时,size0addelementData[0]赋值为e,然后size设置为1(类似执行以下两条语句elementData[0]=e;size=1)。将元素的索引赋给elementData[size]不是会出现数组越界的情况吗?这里关键就在ensureCapacity(size+1)中了。

    根据ensureCapacity的方法名可以知道是确保容量用的。ensureCapacity(size+1)后面的注释可以明白是增加modCount的值(加了俩感叹号,应该蛮重要的,来看看)。

[java] view plain copy

 

 

/** 

      * Increases the capacity of this <tt>ArrayList</tt> instance, if 

      * necessary, to ensure that it can hold at least the number of elements 

      * specified by the minimum capacity argument. 

      * 

      * @param   minCapacity   the desired minimum capacity 

      */  

     public void ensureCapacity(int minCapacity) {  

     modCount++;  

     int oldCapacity = elementData.length;  

     if (minCapacity > oldCapacity) {  

         Object oldData[] = elementData;  

         int newCapacity = (oldCapacity * 3)/2 + 1;  

             if (newCapacity < minCapacity)  

         newCapacity = minCapacity;  

             // minCapacity is usually close to size, so this is a win:  

             elementData = Arrays.copyOf(elementData, newCapacity);  

     }  

     }  

The number of times this list has been structurally modified.

    这是对modCount的解释,意为记录list结构被改变的次数(观察源码可以发现每次调用ensureCapacoty方法,modCount的值都将增加,但未必数组结构会改变,所以感觉对modCount的解释不是很到位)。

    增加modCount之后,判断minCapacity(即size+1)是否大于oldCapacity(即elementData.length),若大于,则调整容量为max((oldCapacity*3)/2+1,minCapacity),调整elementData容量为新的容量,即将返回一个内容为原数组元素,大小为新容量的数组赋给elementData;否则不做操作。

    所以调用ensureCapacity至少将elementData的容量增加的1,所以elementData[size]不会出现越界的情况。

    容量的拓展将导致数组元素的复制,多次拓展容量将执行多次整个数组内容的复制。若提前能大致判断list的长度,调用ensureCapacity调整容量,将有效的提高运行速度。

    可以理解提前分配好空间可以提高运行速度,但是测试发现提高的并不是很大,而且若list原本数据量就不会很大效果将更不明显。

    add(int index, E element)

    add(int index,E element)在指定位置插入元素。

[java] view plain copy

 

 

public void add(int index, E element) {  

     if (index > size || index < 0)  

         throw new IndexOutOfBoundsException(  

         “Index: “+index+”, Size: “+size);  

   

     ensureCapacity(size+1);  // Increments modCount!!  

     System.arraycopy(elementData, index, elementData, index + 1,  

              size – index);  

     elementData[index] = element;  

     size++;  

     }  

   首先判断指定位置index是否超出elementData的界限,之后调用ensureCapacity调整容量(若容量足够则不会拓展),调用System.arraycopyelementDataindex开始的size-index个元素复制到index+1size+1的位置(即index开始的元素都向后移动一个位置),然后将index位置的值指向element。       

    addAll(Collection<? extends E> c)

[java] view plain copy

 

 

public boolean addAll(Collection<? extends E> c) {  

     Object[] a = c.toArray();  

         int numNew = a.length;  

     ensureCapacity(size + numNew);  // Increments modCount  

         System.arraycopy(a, 0, elementData, size, numNew);  

         size += numNew;  

     return numNew != 0;  

     }  

  先将集合c转换成数组,根据转换后数组的程度和ArrayListsize拓展容量,之后调用System.arraycopy方法复制元素到elementData的尾部,调整size。根据返回的内容分析,只要集合c的大小不为空,即转换后的数组长度不为0则返回true

    addAll(int index,Collection<? extends E> c)

[java] view plain copy

 

 

public boolean addAll(int index, Collection<? extends E> c) {  

     if (index > size || index < 0)  

         throw new IndexOutOfBoundsException(  

         “Index: ” + index + “, Size: ” + size);  

   

     Object[] a = c.toArray();  

     int numNew = a.length;  

     ensureCapacity(size + numNew);  // Increments modCount  

   

     int numMoved = size – index;  

     if (numMoved > 0)  

         System.arraycopy(elementData, index, elementData, index + numNew,  

                  numMoved);  

   

         System.arraycopy(a, 0, elementData, index, numNew);  

     size += numNew;  

     return numNew != 0;  

     }  

  先判断index是否越界。其他内容与addAll(Collection<? extends E> c)基本一致,只是复制的时候先将index开始的元素向后移动Xc转为数组后的长度)个位置(也是一个复制的过程),之后将数组内容复制到elementDataindex位置至index+X

    clear()

[java] view plain copy

 

 

public void clear() {  

     modCount++;  

   

     // Let gc do its work  

     for (int i = 0; i < size; i++)  

         elementData[i] = null;  

   

     size = 0;  

     }  

clear的时候并没有修改elementData的长度(好不容易申请、拓展来的,凭什么释放,留着搞不好还有用呢。这使得确定不再修改list内容之后最好调用trimToSize来释放掉一些空间),只是将所有元素置为nullsize设置为0

    clone()

    返回此 ArrayList 实例的浅表副本。(不复制这些元素本身。)

[java] view plain copy

 

 

public Object clone() {  

     try {  

         ArrayList<E> v = (ArrayList<E>) super.clone();  

         v.elementData = Arrays.copyOf(elementData, size);  

         v.modCount = 0;  

         return v;  

     } catch (CloneNotSupportedException e) {  

         // this shouldn’t happen, since we are Cloneable  

         throw new InternalError();  

     }  

     }  

  调用父类的clone方法返回一个对象的副本,将返回对象的elementData数组的内容赋值为原对象elementData数组的内容,将副本的modCount设置为0

    contains(Object)

[html] view plain copy

 

 

public boolean contains(Object o) {  

     return indexOf(o) >= 0;  

     }  

 indexOf方法返回值与0比较来判断对象是否在list中。接着看indexOf

    indexOf(Object)

[java] view plain copy

 

 

public int indexOf(Object o) {  

     if (o == null) {  

         for (int i = 0; i < size; i++)  

         if (elementData[i]==null)  

             return i;  

     } else {  

         for (int i = 0; i < size; i++)  

         if (o.equals(elementData[i]))  

             return i;  

     }  

     return -1;  

     }  

 

通过遍历elementData数组来判断对象是否在list中,若存在,返回index[0,size-1]),若不存在则返回-1。所以contains方法可以通过indexOf(Object)方法的返回值来判断对象是否被包含在list中。

    既然看了indexOf(Object)方法,接着就看lastIndexOf,光看名字应该就明白了返回的是传入对象在elementData数组中最后出现的index值。

[java] view plain copy

 

 

public int lastIndexOf(Object o) {  

     if (o == null) {  

         for (int i = size-1; i >= 0; i–)  

         if (elementData[i]==null)  

             return i;  

     } else {  

         for (int i = size-1; i >= 0; i–)  

         if (o.equals(elementData[i]))  

             return i;  

     }  

     return -1;  

     }  

采用了从后向前遍历element数组,若遇到Object则返回index值,若没有遇到,返回-1

    get(int index)

    这个方法看着很简单,应该是返回elementData[index]就完了。

[java] view plain copy

 

 

public E get(int index) {  

     RangeCheck(index);  

  

     return (E) elementData[index];  

     }  


但看代码的时候看到调用了RangeCheck方法,而且还是大写的方法,看看究竟有什么内容吧。[java] view plain copy

 

 

/** 

      * Checks if the given index is in range. 

 */  

 private void RangeCheck(int index) {  

     if (index >= size)  

         throw new IndexOutOfBoundsException(  

         “Index: “+index+”, Size: “+size);  

     }  

 

 就是检查一下是不是超出数组界限了,超出了就抛出IndexOutBoundsException异常。为什么要大写呢???

    isEmpty()

    直接返回size是否等于0

    remove(int index)

[java] view plain copy

 

 

public E remove(int index) {  

     RangeCheck(index);  

     modCount++;  

     E oldValue = (E) elementData[index];  

     int numMoved = size – index – 1;  

     if (numMoved > 0)  

         System.arraycopy(elementData, index+1, elementData, index,  

                  numMoved);  

     elementData[–size] = null; // Let gc do its work  

     return oldValue;  

     }  

 

首先是检查范围,修改modCount,保留将要被移除的元素,将移除位置之后的元素向前挪动一个位置,将list末尾元素置空(null),返回被移除的元素。

    remove(Object o)

[java] view plain copy

 

 

public boolean remove(Object o) {  

     if (o == null) {  

             for (int index = 0; index < size; index++)  

         if (elementData[index] == null) {  

             fastRemove(index);  

             return true;  

         }  

     } else {  

         for (int index = 0; index < size; index++)  

         if (o.equals(elementData[index])) {  

             fastRemove(index);  

             return true;  

         }  

         }  

     return false;  

     }  


  首先通过代码可以看到,当移除成功后返回true,否则返回falseremove(Object o)中通过遍历element寻找是否存在传入对象,一旦找到就调用fastRemove移除对象。为什么找到了元素就知道了index,不通过remove(index)来移除元素呢?因为fastRemove跳过了判断边界的处理,因为找到元素就相当于确定了index不会超过边界,而且fastRemove并不返回被移除的元素。下面是fastRemove的代码,基本和remove(index)一致。[java] view plain copy

 

 

private void fastRemove(int index) {  

         modCount++;  

         int numMoved = size – index – 1;  

         if (numMoved > 0)  

             System.arraycopy(elementData, index+1, elementData, index,  

                              numMoved);  

         elementData[–size] = null; // Let gc do its work  

     }  


  removeRange(int fromIndex,int toIndex)

[java] view plain copy

 

 

protected void removeRange(int fromIndex, int toIndex) {  

     modCount++;  

     int numMoved = size – toIndex;  

         System.arraycopy(elementData, toIndex, elementData, fromIndex,  

                          numMoved);  

   

     // Let gc do its work  

     int newSize = size – (toIndex-fromIndex);  

     while (size != newSize)  

         elementData[–size] = null;  

     }  

执行过程是将elementDatatoIndex位置开始的元素向前移动到fromIndex,然后将toIndex位置之后的元素全部置空顺便修改size

    这个方法是protected,及受保护的方法,为什么这个方法被定义为protected呢?

    这是一个解释,但是可能不容易看明白。    先看下面这个例子

[java] view plain copy

 

 

ArrayList<Integer> ints = new ArrayList<Integer>(Arrays.asList(0, 1, 2,  

                 3, 4, 5, 6));  

         // fromIndex low endpoint (inclusive) of the subList  

         // toIndex high endpoint (exclusive) of the subList  

        ints.subList(2, 4).clear();  

         System.out.println(ints);  

 输出结果是[0, 1, 4, 5, 6],结果是不是像调用了removeRange(int fromIndex,int toIndex)!哈哈哈,就是这样的。但是为什么效果相同呢?是不是调用了removeRange(int fromIndex,int toIndex)呢?set(int index,E element)

 

[java] view plain copy

 

 

public E set(int index, E element) {  

     RangeCheck(index);  

   

     E oldValue = (E) elementData[index];  

     elementData[index] = element;  

     return oldValue;  

     }  

  首先检查范围,用新元素替换旧元素并返回旧元素。

    size()

    size()方法直接返回size

    toArray()

[java] view plain copy

 

 

public Object[] toArray() {  

         return Arrays.copyOf(elementData, size);  

     }  

 调用Arrays.copyOf将返回一个数组,数组内容是sizeelementData的元素,即拷贝elementData0size-1位置的元素到新数组并返回。

    toArray(T[] a)

[java] view plain copy

 

 

public <T> T[] toArray(T[] a) {  

         if (a.length < size)  

             // Make a new array of a’s runtime type, but my contents:  

             return (T[]) Arrays.copyOf(elementData, size, a.getClass());  

     System.arraycopy(elementData, 0, a, 0, size);  

         if (a.length > size)  

             a[size] = null;  

         return a;  

     }  

 如果传入数组的长度小于size,返回一个新的数组,大小为size,类型与传入数组相同。所传入数组长度与size相等,则将elementData复制到传入数组中并返回传入的数组。若传入数组长度大于size,除了复制elementData外,还将把返回数组的第size个元素置为空。

    trimToSize()

[java] view plain copy

 

 

public void trimToSize() {  

     modCount++;  

     int oldCapacity = elementData.length;  

     if (size < oldCapacity) {  

             elementData = Arrays.copyOf(elementData, size);  

     }  

     }  

由于elementData的长度会被拓展,size标记的是其中包含的元素的个数。所以会出现size很小但elementData.length很大的情况,将出现空间的浪费。trimToSize将返回一个新的数组给elementData,元素内容保持不变,lengthsize相同,节省空间。

     学习Java最好的方式还必须是读源码。读完源码你才会发现这东西为什么是这么玩的,有哪些限制,关键点在哪里等等。而且这些源码都是大牛们写的,你能从中学习到很多。 

解释下fail-fast以及fail-safe

在我们详细讨论这两种机制的区别之前,首先得先了解并发修改。

1.什么是同步修改?

当一个或多个线程正在遍历一个集合Collection,此时另一个线程修改了这个集合的内容(添加,删除或者修改)。这就是并发修改

2.什么是 fail-fast 机制?

fail-fast机制在遍历一个集合时,当集合结构被修改,会抛出Concurrent Modification Exception

fail-fast会在以下两种情况下抛出ConcurrentModificationException

1)单线程环境

集合被创建后,在遍历它的过程中修改了结构,比如iteratorremove方法。

2)多线程环境

当一个线程在遍历这个集合,而另一个线程对这个集合的结构进行了修改。

 

注意,迭代器的快速失败行为无法得到保证,因为一般来说,不可能对是否出现不同步并发修改做出任何硬性保证。快速失败迭代器会尽最大努力抛出 ConcurrentModificationException。因此,为提高这类迭代器的正确性而编写一个依赖于此异常的程序是错误的做法:迭代器的快速失败行为应该仅用于检测 bug

3. fail-fast机制是如何检测的?

迭代器在遍历过程中是直接访问内部数据的,因此内部的数据在遍历的过程中无法被修改。为了保证不被修改,迭代器内部维护了一个标记 “mode” ,当集合结构改变(添加删除或者修改),标记“mode”会被修改,而迭代器每次的hasNext()next()方法都会检查该“mode”是否被改变,当检测到被修改时,抛出Concurrent Modification Exception

。下面看看ArrayList迭代器部分的源码

4. fail-safe机制

fail-safe任何对集合结构的修改都会在一个复制的集合上进行修改,因此不会抛出ConcurrentModificationException

fail-safe机制有两个问题

1)需要复制集合,产生大量的无效对象,开销大

2)无法保证读取的数据是目前原始数据结构中的数据。

 

 

Fail Fast Iterator

Fail Safe Iterator

Throw ConcurrentModification Exception

Yes

No

Clone object

No

Yes

Memory Overhead

No

Yes

Examples

HashMap,Vector,ArrayList,HashSet


CopyOnWriteArrayList,
ConcurrentHashMap

 

 

 

    原文作者:java集合
    原文地址: http://www.cnblogs.com/prctice/p/5480886.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞