POJ 2417 Discrete Logging (Baby-Step Giant-Step)

Discrete Logging

Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 2819 Accepted: 1386

Description

Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that 

    B

L

 == N (mod P)

Input

Read several lines of input, each containing P,B,N separated by a space.

Output

For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print “no solution”.

Sample Input

5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111

Sample Output

0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587

Hint

The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat’s theorem that states 

   B

(P-1)

 == 1 (mod P)

for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat’s theorem is that for any m 

   B

(-m)

 == B

(P-1-m)

 (mod P) .

Source

Waterloo Local 2002.01.26

 

 

 

 

 

 

 

模板题。

http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4

 

 

 

 1 /* ***********************************************
 2 Author        :kuangbin
 3 Created Time  :2013/8/24 0:06:54
 4 File Name     :F:\2013ACM练习\专题学习\数学\Baby_step_giant_step\POJ2417.cpp
 5 ************************************************ */
 6 
 7 #include <stdio.h>
 8 #include <string.h>
 9 #include <iostream>
10 #include <algorithm>
11 #include <vector>
12 #include <queue>
13 #include <set>
14 #include <map>
15 #include <string>
16 #include <math.h>
17 #include <stdlib.h>
18 #include <time.h>
19 using namespace std;
20 //baby_step giant_step
21 // a^x = b (mod n) n为素数,a,b < n
22 // 求解上式 0<=x < n的解
23 #define MOD 76543
24 int hs[MOD],head[MOD],next[MOD],id[MOD],top;
25 void insert(int x,int y)
26 {
27     int k = x%MOD;
28     hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++;
29 }
30 int find(int x)
31 {
32     int k = x%MOD;
33     for(int i = head[k]; i != -1; i = next[i])
34         if(hs[i] == x)
35             return id[i];
36     return -1;
37 }
38 int BSGS(int a,int b,int n)
39 {
40     memset(head,-1,sizeof(head));
41     top = 1;
42     if(b == 1)return 0;
43     int m = sqrt(n*1.0), j;
44     long long x = 1, p = 1;
45     for(int i = 0; i < m; ++i, p = p*a%n)insert(p*b%n,i);
46     for(long long i = m; ;i += m)
47     {
48         if( (j = find(x = x*p%n)) != -1 )return i-j;
49         if(i > n)break;
50     }
51     return -1;
52 }
53 int main()
54 {
55     //freopen("in.txt","r",stdin);
56     //freopen("out.txt","w",stdout);
57     int a,b,n;
58     while(scanf("%d%d%d",&n,&a,&b) == 3)
59     {
60         int ans = BSGS(a,b,n);
61         if(ans == -1)printf("no solution\n");
62         else printf("%d\n",ans);
63     }
64     return 0;
65 }

 

 

 

 

    原文作者:kuangbin
    原文地址: https://www.cnblogs.com/kuangbin/p/3278852.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞