Closest Common Ancestors
Time Limit: 2000MS | Memory Limit: 10000K | |
Total Submissions: 13372 | Accepted: 4340 |
Description
Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)
Input
The data set, which is read from a the std input, starts with the tree description, in the form:
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 … successorn
…
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) …
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times
For example, for the following tree:
Sample Input
5 5:(3) 1 4 2 1:(0) 4:(0) 2:(1) 3 3:(0) 6 (1 5) (1 4) (4 2) (2 3) (1 3) (4 3)
Sample Output
2:1 5:5
Hint
Huge input, scanf is recommended.
1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2013-9-5 9:11:48 4 File Name :F:\2013ACM练习\专题学习\LCA\POJ1470_2.cpp 5 ************************************************ */ 6 7 #include <stdio.h> 8 #include <string.h> 9 #include <iostream> 10 #include <algorithm> 11 #include <vector> 12 #include <queue> 13 #include <set> 14 #include <map> 15 #include <string> 16 #include <math.h> 17 #include <stdlib.h> 18 #include <time.h> 19 using namespace std; 20 /* 21 * POJ 1470 22 * 给出一颗有向树,Q个查询 23 * 输出查询结果中每个点出现次数 24 */ 25 /* 26 * LCA离线算法,Tarjan 27 * 复杂度O(n+Q); 28 */ 29 const int MAXN = 1010; 30 const int MAXQ = 500010;//查询数的最大值 31 32 //并查集部分 33 int F[MAXN];//需要初始化为-1 34 int find(int x) 35 { 36 if(F[x] == -1)return x; 37 return F[x] = find(F[x]); 38 } 39 void bing(int u,int v) 40 { 41 int t1 = find(u); 42 int t2 = find(v); 43 if(t1 != t2) 44 F[t1] = t2; 45 } 46 //************************ 47 bool vis[MAXN];//访问标记 48 int ancestor[MAXN];//祖先 49 struct Edge 50 { 51 int to,next; 52 }edge[MAXN*2]; 53 int head[MAXN],tot; 54 void addedge(int u,int v) 55 { 56 edge[tot].to = v; 57 edge[tot].next = head[u]; 58 head[u] = tot++; 59 } 60 61 struct Query 62 { 63 int q,next; 64 int index;//查询编号 65 }query[MAXQ*2]; 66 int answer[MAXQ];//存储最后的查询结果,下标0~Q-1 67 int h[MAXQ]; 68 int tt; 69 int Q; 70 71 void add_query(int u,int v,int index) 72 { 73 query[tt].q = v; 74 query[tt].next = h[u]; 75 query[tt].index = index; 76 h[u] = tt++; 77 query[tt].q = u; 78 query[tt].next = h[v]; 79 query[tt].index = index; 80 h[v] = tt++; 81 } 82 83 void init() 84 { 85 tot = 0; 86 memset(head,-1,sizeof(head)); 87 tt = 0; 88 memset(h,-1,sizeof(h)); 89 memset(vis,false,sizeof(vis)); 90 memset(F,-1,sizeof(F)); 91 memset(ancestor,0,sizeof(ancestor)); 92 } 93 94 void LCA(int u) 95 { 96 ancestor[u] = u; 97 vis[u] = true; 98 for(int i = head[u];i != -1;i = edge[i].next) 99 { 100 int v = edge[i].to; 101 if(vis[v])continue; 102 LCA(v); 103 bing(u,v); 104 ancestor[find(u)] = u; 105 } 106 for(int i = h[u];i != -1;i = query[i].next) 107 { 108 int v = query[i].q; 109 if(vis[v]) 110 { 111 answer[query[i].index] = ancestor[find(v)]; 112 } 113 } 114 } 115 116 bool flag[MAXN]; 117 int Count_num[MAXN]; 118 int main() 119 { 120 //freopen("in.txt","r",stdin); 121 //freopen("out.txt","w",stdout); 122 int n; 123 int u,v,k; 124 while(scanf("%d",&n) == 1) 125 { 126 init(); 127 memset(flag,false,sizeof(flag)); 128 for(int i = 1;i <= n;i++) 129 { 130 scanf("%d:(%d)",&u,&k); 131 while(k--) 132 { 133 scanf("%d",&v); 134 flag[v] = true; 135 addedge(u,v); 136 addedge(v,u); 137 } 138 } 139 scanf("%d",&Q); 140 for(int i = 0;i < Q;i++) 141 { 142 char ch; 143 cin>>ch; 144 scanf("%d %d)",&u,&v); 145 add_query(u,v,i); 146 } 147 int root; 148 for(int i = 1;i <= n;i++) 149 if(!flag[i]) 150 { 151 root = i; 152 break; 153 } 154 LCA(root); 155 memset(Count_num,0,sizeof(Count_num)); 156 for(int i = 0;i < Q;i++) 157 Count_num[answer[i]]++; 158 for(int i = 1;i <= n;i++) 159 if(Count_num[i] > 0) 160 printf("%d:%d\n",i,Count_num[i]); 161 } 162 return 0; 163 }