分布式锁
在同一个jvm中,jdk已经提供了lock、synchronized等同步机制,但是在分布式环境下,分布在不同机器上的多个进程可能对一些资源产生竞争关系,无法再使用jdk提供的同步机制,分布式锁就是用来解决这种场景下的同步问题。
利用zk实现分布式锁思路
- 建立一个名为lock的持久节点(Persistent)
- 当进程需要访问共享资源时,会先在lock节点下创建临时顺序节点,然后对lock节点下所有的子节点进行按序号排序,如果该进程创建的临时节点是所有子节点序号最小的,该进程获得锁进入临界区,执行任务后删除对应的临时顺序节点
- 如果序号不是最小的,就获得该节点序号的上一个序号对应节点,并给该节点是否存在注册监听事件,等待监听到其上个节点被删除后,重新去获取锁,从而进入临界区执行任务,执行后同样删除所创建的临时节点,这里只去监听比自己节点序号小1的节点,不用去监听所有的节点。
代码实现
详细代码请点击zk实现分布式锁
public class DistributedLock implements Watcher {
private int threadId;
private ZooKeeper zk = null;
private String selfPath;
private String waitPath;
private String LOG_PREFIX_OF_THREAD;
private static final int SESSION_TIMEOUT = 10000;
private static final String GROUP_PATH = "/locks";
private static final String SUB_PATH = "/locks/sub";
private static final String CONNECTION_STRING = "ubuntu:2181";
private static final int THREAD_NUM = 10;
// 确保连接zk成功;
private CountDownLatch connectedSemaphore = new CountDownLatch(1);
// 确保所有线程运行结束;
private static final CountDownLatch threadSemaphore = new CountDownLatch(
THREAD_NUM);
public DistributedLock(int id) {
this.threadId = id;
LOG_PREFIX_OF_THREAD = "【第" + threadId + "个线程】";
}
public static void main(String[] args) {
// 用多线程模拟分布式环境
for (int i = 0; i < THREAD_NUM; i++) {
final int threadId = i + 1;
new Thread() {
@Override
public void run() {
try {
DistributedLock dc = new DistributedLock(threadId);
dc.createConnection(CONNECTION_STRING, SESSION_TIMEOUT);
// GROUP_PATH不存在的话,由一个线程创建即可;
synchronized (threadSemaphore) {
dc.createPath(GROUP_PATH, "该节点由线程" + threadId
+ "创建", true);
}
dc.getLock();
} catch (Exception e) {
System.out.println("【第" + threadId + "个线程】 抛出的异常:");
e.printStackTrace();
}
}
}.start();
}
try {
threadSemaphore.await();
System.out.println("所有线程运行结束!");
} catch (InterruptedException e) {
e.printStackTrace();
}
}
/**
* 获取锁
*
* @return
*/
private void getLock() throws KeeperException, InterruptedException {
// 去创建临时节点
selfPath = zk.create(SUB_PATH, null, ZooDefs.Ids.OPEN_ACL_UNSAFE,
CreateMode.EPHEMERAL_SEQUENTIAL);
System.out.println(LOG_PREFIX_OF_THREAD + "创建锁路径:" + selfPath);
if (checkMinPath()) {
getLockSuccess();
}
}
/**
* 创建节点
*
* @param path 节点path
* @param data 初始数据内容
* @return
*/
public boolean createPath(String path, String data, boolean needWatch)
throws KeeperException, InterruptedException {
if (zk.exists(path, needWatch) == null) {
System.out.println(LOG_PREFIX_OF_THREAD
+ "节点创建成功, Path: "
+ this.zk.create(path, data.getBytes(),
ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT)
+ ", content: " + data);
}
return true;
}
/**
* 创建ZK连接
*
* @param connectString ZK服务器地址列表
* @param sessionTimeout Session超时时间
*/
public void createConnection(String connectString, int sessionTimeout)
throws IOException, InterruptedException {
zk = new ZooKeeper(connectString, sessionTimeout, this);
connectedSemaphore.await();
}
/**
* 获取锁成功
*/
public void getLockSuccess() throws KeeperException, InterruptedException {
if (zk.exists(this.selfPath, false) == null) {
System.out.println(LOG_PREFIX_OF_THREAD + "本节点已不在了...");
return;
}
System.out.println(LOG_PREFIX_OF_THREAD + "获取锁成功,赶紧干活!");
Thread.sleep(2000);
System.out.println(LOG_PREFIX_OF_THREAD + "删除本节点:" + selfPath);
zk.delete(this.selfPath, -1);
releaseConnection();
threadSemaphore.countDown();
}
/**
* 关闭ZK连接
*/
public void releaseConnection() {
if (this.zk != null) {
try {
this.zk.close();
} catch (InterruptedException e) {
}
}
System.out.println(LOG_PREFIX_OF_THREAD + "释放连接");
}
/**
* 检查自己是不是最小的节点
*
* @return
*/
public boolean checkMinPath() throws KeeperException, InterruptedException {
List<String> subNodes = zk.getChildren(GROUP_PATH, false);
Collections.sort(subNodes);
int index = subNodes.indexOf(selfPath.substring(GROUP_PATH.length() + 1));
switch (index) {
case -1: {
System.out.println(LOG_PREFIX_OF_THREAD + "本节点已不在了..." + selfPath);
return false;
}
case 0: {
System.out.println(LOG_PREFIX_OF_THREAD + "子节点中,我果然是老大...哈哈哈" + selfPath);
return true;
}
default: {
this.waitPath = GROUP_PATH + "/" + subNodes.get(index - 1);
System.out.println(LOG_PREFIX_OF_THREAD + "获取子节点中,排在我前面的。。。"
+ waitPath);
try {
zk.getData(waitPath, true, new Stat());
return false;
} catch (KeeperException e) {
if (zk.exists(waitPath, false) == null) {
System.out.println(LOG_PREFIX_OF_THREAD + "子节点中,排在我前面的。。。"
+ waitPath + "已失踪,幸福来得太突然?");
return checkMinPath();
} else {
throw e;
}
}
}
}
}
@Override
public void process(WatchedEvent event) {
// 监听器处理事件
if (event == null) {
return;
}
Event.KeeperState keeperState = event.getState();
Event.EventType eventType = event.getType();
if (Event.KeeperState.SyncConnected == keeperState) {
if (Event.EventType.None == eventType) {
System.out.println(LOG_PREFIX_OF_THREAD + "成功连接上ZK服务器");
connectedSemaphore.countDown();
} else if (event.getType() == Event.EventType.NodeDeleted
&& event.getPath().equals(waitPath)) {
System.out.println(LOG_PREFIX_OF_THREAD
+ "收到情报,排我前面的家伙已挂,我是不是可以出山了?");
try {
if (checkMinPath()) {
getLockSuccess();
}
} catch (KeeperException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} else if (Event.KeeperState.Disconnected == keeperState) {
System.out.println(LOG_PREFIX_OF_THREAD + "与ZK服务器断开连接");
} else if (Event.KeeperState.AuthFailed == keeperState) {
System.out.println(LOG_PREFIX_OF_THREAD + "权限检查失败");
} else if (Event.KeeperState.Expired == keeperState) {
System.out.println(LOG_PREFIX_OF_THREAD + "会话失效");
}
}
}
可以看到代码还是有点复杂的,通常线上很好会使用zk来实现分布式锁,redis作为一种较更简单方便的方式常常被使用。
基于redis的SetNX实现分布式锁原理:
setNX是Redis提供的一个原子操作,如果指定key存在,那么setNX失败,如果不存在会进行Set操作并返回成功。我们可以利用这个来实现一个分布式的锁,主要思路就是,set成功表示获取锁,set失败表示获取失败,失败后需要重试。
package lock;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;
import redis.clients.jedis.Jedis;
/**
* Redis分布式锁
*/
public class RedisLockTest {
private Jedis jedisCli = new Jedis("192.168.58.99", 6379);
private int expireTime = 1;
/**
* 获取锁
*
* @param lockID
* @return
*/
public boolean lock(String lockID) {
while (true) {
long returnFlag = jedisCli.setnx(lockID, "1");
if (returnFlag == 1) {
System.out.println(Thread.currentThread().getName() + " get lock....");
return true;
}
System.out.println(Thread.currentThread().getName() + " is trying lock....");
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
return false;
}
}
}
/**
* 超时获取锁
*
* @param lockID
* @param timeOuts
* @return
*/
public boolean lock(String lockID, long timeOuts) {
long current = System.currentTimeMillis();
long future = current + timeOuts;
long timeStep = 500;
CountDownLatch latch = new CountDownLatch(1);
while (future > current) {
long returnFlag = jedisCli.setnx(lockID, "1");
if (returnFlag == 1) {
System.out.println(Thread.currentThread().getName() + " get lock....");
jedisCli.expire(lockID, expireTime);
return true;
}
System.out.println(Thread.currentThread().getName() + " is trying lock....");
try {
latch.await(timeStep, TimeUnit.MILLISECONDS);
} catch (InterruptedException e) {
e.printStackTrace();
}
current = current + timeStep;
}
return false;
}
public void unlock(String lockId) {
long flag = jedisCli.del(lockId);
if (flag > 0) {
System.out.println(Thread.currentThread().getName() + " release lock....");
} else {
System.out.println(Thread.currentThread().getName() + " release lock fail....");
}
}
/**
* 线程工厂,命名线程
*/
public static class MyThreadFactory implements ThreadFactory {
public static AtomicInteger count = new AtomicInteger();
@Override
public Thread newThread(Runnable r) {
count.getAndIncrement();
Thread thread = new Thread(r);
thread.setName("Thread-lock-test " + count);
return thread;
}
}
public static void main(String args[]) {
final String lockID = "lockTest";
Runnable task = () -> {
RedisLockTest testCli = new RedisLockTest();
testCli.lock(lockID);
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
testCli.unlock(lockID);
};
MyThreadFactory factory = new MyThreadFactory();
ExecutorService services = Executors.newFixedThreadPool(10);
for (int i = 0; i < 3; i++)
services.execute(factory.newThread(task));
}
}
实现起来比较简单明了,并且对于锁删除失败(分布式锁基本都有这个问题),可以对key设置失效时间,这个超时时间需要能保证获得锁的这个进程已经获取完了竞争资源。相比zk的实现唯一不足的地方是没有通知机制,需要不断的轮询和睡眠去获取锁。