cas全称是compare and set,是一种典型的事务操作,本文会介绍三种redis实现cas事务的方法,并会解决下面的虚拟问题:
维护一个值,如果这个值小于当前时间,则设置为当前时间;如果这个值大于当前时间,则设置为当前时间+30。简单的单线程环境下代码如下:
# 初始化
r = redis.Redis()
if not r.exists("key_test"):
r.set("key_test", 0)
def inc():
count = int(r.get('key_test')) + 30 #1
# 如果值比当前时间小,则设置为当前时间
count = max(count, int(time.time())) #2
r.set('key_test', count) #3
return count
很简单的一段代码,在单线程环境下可以跑的很欢,但显然,是无法移植到多线程或者是多进程环境的(进程A和B同时运行到#1,获取了相同的count值,然后运行#2#3,会导致count值总共只增加了30)。而为了能在多进程环境下运行,我们需要引入一些其他的东西。
py-redis本身自带的事务操作
redis有这么几个和事务相关的命令,multi,exec,watch。通过这几个命令,可以实现‘将多个命令打包,然后一次性、按顺序执行,且不会被终端’。事务会从MULTI开始,执行EXEC后触发事件。另外,我们还需要WATCH,watch可以监视任意数量的键,当在调用EXEC执行事务时,如果任意一个键被修改了,整个事务不会执行。
下边是使用redis本身的事务解决cas问题的代码。
class CasNormal(object):
def __init__(self, host, key):
self.r = redis.Redis(host)
self.key = key
if not self.r.exists(self.key):
self.r.set(self.key, 0)
def inc(self):
with self.r.pipeline() as pipe:
while True:
try:
#监视一个key,如果在执行期间被修改了,会抛出WatchError
pipe.watch(self.key)
next_count = 30 + int(pipe.get(self.key))
pipe.multi()
if next_count < int(time.time()):
next_count = int(time.time())
pipe.set(self.key, next_count)
pipe.execute()
return next_count
except WatchError:
continue
finally:
pipe.reset()
代码也不复杂,引入了之前说到的multi,exec,watch,如果对事务操作比较熟悉的同学,可以很容易看出来,这是一个乐观锁的操作(咱们假设没人竞争来着,每次去拿数据的时候都不会上锁,真有人来改了再说。)乐观锁在高并发的情况下会显得很无力,文末的性能对比会显示这个问题。
使用基于redis的悲观锁
悲观锁,就是很悲观的锁,每次拿数据都会假设别人也要拿,先给锁起来,用完再把锁释放掉。redis本身没有实现悲观锁,但我们可以先用redis实现一个悲观锁。
此处应该有个推倒出redis悲观锁的过程,不过太麻烦了...直接丢个链接吧...
https://gist.github.com/gaoconghui/61e878c725952c134a1193d560df7434
ok,咱们现在有悲观锁了,做起事来也有底气了,根据上边的代码,咱们只要加上@ synchronized注释就能保证同一时间只有一个进程在执行。下边是基于悲观锁的解决方案。
lock_conn = redis.Redis("localhost")
class CasLock(object):
def __init__(self, host, key):
self.r = redis.Redis(host)
self.key = key
if not self.r.exists(self.key):
self.r.set(self.key, 0)
@synchronized(lock_conn, "lock", 10)
def inc(self):
next_count = 30 + int(self.r.get(self.key))
if next_count < int(time.time()):
next_count = int(time.time())
self.r.set(self.key, next_count)
return next_count
代码看上去少多了(因为引入了synchronized…)
基于lua脚本实现
上边两种方法都是用锁来实现的,锁的实现总会出现竞争的问题,区别无非是出现竞争了咋办的问题。使用redis lua脚本的实现,可以直接把这个cas操作当成一个<b>原子操作</b>。
我们知道,redis本身的一系列操作,都是原子操作,且redis会按顺序执行所有收到的命令。先看代码
class CasLua(object):
def __init__(self, host, key):
self.r = redis.Redis(host)
self.key = key
if not self.r.exists(self.key):
self.r.set(self.key, 0)
self._lua = self.r.register_script("""
local next_count = redis.call('get',KEYS[1]) + ARGV[1]
ARGV[2] = tonumber(ARGV[2])
if next_count < ARGV[2] then
next_count = ARGV[2]
end
redis.call('set',KEYS[1],next_count)
return tostring(next_count)
""")
def inc(self):
return int(self._lua([self.key], [30, int(time.time())]))
这里先注册了这个脚本,后边可以直接去使用他。关于redis lua脚本的文章有不少,感兴趣的可以去搜搜看,这边就不赘述了。
性能对比
这边的测试只是一个非常简单的测试(不过还是能看出效果来的),测试换机就是自己的开发机,数字看个大小就行了。
分别测了三种操作在单线程,五个线程,十个线程,五十个线程情况下,进行1000次操作各自的表现,时间如下
optimistic Lock pessimistic lock lua
1thread 0.43 0.71 0.35
5thread 5.80 3.10 0.62
10thread 17.80 5.60 1.30
50thread 245.00 29.60 6.50
依次是redis本身事务实现的乐观锁,基于redis实现的悲观锁以及lua实现。
在比较悲观锁和乐观锁之前,需要先说明一点,这边的测试对乐观锁不是很公平,乐观锁本身就是假设不会有很多的并发的。在单线程情况下,悲观锁要差一些。单线程下,不存在竞争关系,悲观锁耗时长仅因为是多了一次redis的网络交互。随着线程的增加,悲观锁的性能逐渐变好,毕竟悲观锁本身就是为了解决这种高并发高竞争的环境而诞生的。在50线程的时候,乐观锁的实现单次操作的时间要0.245秒,非常恐怖,如果是生产环境,几乎都不能用了。
至于lua的性能,快的不可思议,几乎就是线性增加。(50线程的情况下,平均的1000次完成时间是6.5s,换言之,6.5秒内执行了50 * 1000次cas操作)。
以上测试都是本地redis,本地测试,如果redis是远端的,网络交互时间会增加,lua优势会更加明显。
以上。