Java多线程与并发库高级应用-工具类介绍

java.util.concurrent.Lock

1、Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,
锁本身也应该是一个对象。两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象。

  lock替代synchronized

  

class Outputer { Lock lock = new ReentrantLock(); public void output(String name) { int len = name.length(); lock.lock(); try{ for (int i = 0; i < len; i++) { char c = name.charAt(i); System.out.print(c); } }finally{ lock.unlock(); //这里防止内部代码出现异常,即无论如何最后都会释放锁
 } lock.unlock(); System.out.println(); } }

 

售票系统

package com.java.juc;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class TestLock {

    public static void main(String[] args) {
        Ticket ticket = new Ticket();
        new Thread(ticket, "窗口1售票").start();
        new Thread(ticket, "窗口2售票").start();
        new Thread(ticket, "窗口3售票").start();
    }

}

class Ticket implements Runnable {
    private int ticket = 100;
    private Lock lock = new ReentrantLock();

    @Override
    public void run() {
        while (true) {
            lock.lock();
            try {
                if (ticket > 0) {
                    Thread.sleep(20);
                    System.out.println(Thread.currentThread().getName()
                            + ",余票量:" + ticket--);
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                lock.unlock();
            }
        }
    }
}

 

 

 

2、读写锁:

读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可。
* 如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁;
* 如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁。
* 总之,读的时候上读锁,写的时候上写锁!

/* 面试题:3个线程读,3个线程写 同一个数据 */
public class ReadWriteLockTest { public static void main(String[] args) { final Queue3 queue = new Queue3(); for(int i = 0;i<3;i++){ new Thread(new Runnable() { @Override public void run() { while(true){ queue.get(); } } }).start(); new Thread(new Runnable() { @Override public void run() { queue.set(new Random().nextInt(10000)); } }).start(); } } } class Queue3{ private Object data = null; //共享数据 ,只能有一个线程写该数据,但可以有多个线程同时读
    ReadWriteLock rwl = new ReentrantReadWriteLock();  //读写锁
    
    public void get(){ try { rwl.readLock().lock(); //上读锁 可以有多个线程同时读
            System.out.println(Thread.currentThread().getName() + " be ready to read data!"); Thread.sleep((long)Math.random() * 1000); System.out.println(Thread.currentThread().getName() + " have read data : "+ data); } catch (InterruptedException e) { }finally{ rwl.readLock().unlock(); //释放读锁
 } } public void set(Object data){ try { rwl.writeLock().lock(); //添加写锁,保证只能有一个线程进行写操作
            System.out.println(Thread.currentThread().getName() + " be read to write data: "+ data); Thread.sleep((long)Math.random() * 1000); this.data = data; System.out.println(Thread.currentThread().getName() + "has write data"); } catch (InterruptedException e) { e.printStackTrace(); }finally{ rwl.writeLock().unlock(); //释放写锁
 } } }

 简单的读写锁示例

package com.java.juc;

import java.util.Random;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;

public class TestReadWriteLock {
    public static void main(String[] args) {
        final ReadWriteLockDemo demo = new ReadWriteLockDemo();
        new Thread(new Runnable(){
            @Override
            public void run() {
                demo.set(new Random().nextInt(5000));
            }
        },"Write").start();
        
        for(int i = 0;i<100;i++){
            new Thread(new Runnable() {
                @Override
                public void run() {
                    demo.get();
                }
            }, "Read").start();
        }
    }
}

class ReadWriteLockDemo{
    private int number = 0;
    
    private ReadWriteLock lock = new ReentrantReadWriteLock();
    
    public void get(){
        try{
            lock.readLock().lock();
            System.out.println(Thread.currentThread().getName() +" "+number);
        }finally{
            lock.readLock().unlock();
        }
    }
    public void set(int number){
        try{
            lock.writeLock().lock();
            this.number = number;
        }finally{
            lock.writeLock().unlock();
        }
    }
}

 

 

 Hibernate的一个面试题:

  User user = session.load(id,User.class);

  User user = session.get(id,User.class);

  以上两个的却别。

  get()方式,直接查询数据库,如果查询到赋值给User对象,如果没有查询到则返回为null

  load()方式,实际上是从User的一个代理中获取, User$Proxy中包含有一个真实的User对象,当调用load()时,如果成员变量User为null,则从数据库查询将记录返回并给User赋值,当load()时User不为null,则直接返回User对象

 

/** * 面试题: 设计一个缓存系统 * @author Administrator * */
public class CacheDemo { Map<String, Object> cache = new HashMap<String, Object>(); public static void main(String[] args) { } private ReadWriteLock rwl = new ReentrantReadWriteLock(); public Object getData(String key){ rwl.readLock().lock(); Object value = null; try { value = cache.get(key); if(value == null){ rwl.readLock().unlock(); rwl.writeLock().lock(); try { if(value == null){ //防止后边线程加载数据,使用双端检测机制 value = "xxx"; //queryDB
 cache.put(key, value); } }finally{ rwl.writeLock().unlock(); } rwl.readLock().lock(); } } catch (Exception e) { }finally{ rwl.readLock().unlock(); } return value; } }

 

 

ReadWriteLock javaAPI中有缓存的代码:

class CachedData {
   Object data;
   volatile boolean cacheValid;
   ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

   void processCachedData() {
     rwl.readLock().lock();
     if (!cacheValid) {
        // Must release read lock before acquiring write lock
        rwl.readLock().unlock();
        rwl.writeLock().lock();
        // Recheck state because another thread might have acquired
        //   write lock and changed state before we did.
        if (!cacheValid) {
          data = ...
          cacheValid = true;
        }
        // Downgrade by acquiring read lock before releasing write lock
        rwl.readLock().lock();
        rwl.writeLock().unlock(); // Unlock write, still hold read
     }

     use(data);
     rwl.readLock().unlock();
   }
 }

 

3、Condition 实现线程通信

传统的线程通信方式

/* * 传统线程通信 * 主线程和子线程分别打印 100次 和 10次,循环50次 */
public class TraditionalThreadCommunication2 { public static void main(String[] args) { final Buiness buiness = new Buiness(); new Thread(new Runnable() { @Override public void run() { for(int i = 1;i<=50;i++){ buiness.sub(i); } } }).start(); for(int i = 1;i<=50;i++){ buiness.main(i); } } static class Buiness{ private boolean isShouldSub = false;  //主线程先打印
        public synchronized void main(int j){ //进行同步,防止在打印时被其他线程干扰
            while(isShouldSub){  //这里使用while 防止假唤醒
                try { this.wait();  //wait() 和 notify() 必须出现在synchronized同步中
                } catch (InterruptedException e) { e.printStackTrace(); } } for(int i = 1;i<=100;i++){ System.out.println("main thread print "+ i + " loop of " + j); } isShouldSub = true; this.notify(); } public synchronized void sub(int j){ while(!isShouldSub){ try { this.wait(); } catch (InterruptedException e) { e.printStackTrace(); } } for(int i = 1 ; i<=10;i++){ System.out.println("sub thread print "+ i + " loop of " + j); } isShouldSub = false; this.notify(); } } }

 

 

将上述程序改写为使用Condition

/* * 传统线程通信 * 主线程和子线程分别打印 100次 和 10次,循环50次 * 改写成使用 Condition 的方式 */
public class TraditionalThreadCommunication2 { public static void main(String[] args) { final Buiness buiness = new Buiness(); new Thread(new Runnable() { @Override public void run() { for(int i = 1;i<=50;i++){ buiness.sub(i); } } }).start(); for(int i = 1;i<=50;i++){ buiness.main(i); } } /** * 将程序改写为使用Lock&Condition的方式进行 同步和通信 * @author Administrator * */
    static class Buiness{ Lock lock = new ReentrantLock(); Condition condition = lock.newCondition(); private boolean isShouldSub = false;  //主线程先打印
        public void main(int j){ //进行同步,防止在打印时被其他线程干扰
 lock.lock(); try { while(isShouldSub){  //这里使用while 防止假唤醒
                    try { condition.await(); // this.wait(); //wait() 和 notify() 必须出现在同步监视器内部中
                    } catch (Exception e) { e.printStackTrace(); } } for(int i = 1;i<=100;i++){ System.out.println("main thread print "+ i + " loop of " + j); } isShouldSub = true; condition.signal(); // this.notify(); 
            } finally { lock.unlock(); } } public void sub(int j){ lock.lock(); try { while(!isShouldSub){ try { condition.await(); // this.wait();
                    } catch (Exception e) { e.printStackTrace(); } } for(int i = 1 ; i<=10;i++){ System.out.println("sub thread print "+ i + " loop of " + j); } isShouldSub = false; condition.signal(); // this.notify();
            } finally{ lock.unlock(); } } } }

main thread print 1 loop of 1
main thread print 2 loop of 1
main thread print 3 loop of 1
main thread print 4 loop of 1
main thread print 5 loop of 1
main thread print 6 loop of 1
main thread print 7 loop of 1

main thread print 99 loop of 1
main thread print 100 loop of 1
sub thread print 1 loop of 1
sub thread print 2 loop of 1
sub thread print 3 loop of 1
sub thread print 4 loop of 1
sub thread print 5 loop of 1
sub thread print 6 loop of 1
sub thread print 7 loop of 1
sub thread print 8 loop of 1
sub thread print 9 loop of 1
sub thread print 10 loop of 1
main thread print 1 loop of 2
main thread print 2 loop of 2
main thread print 3 loop of 2
main thread print 4 loop of 2
main thread print 5 loop of 2
main thread print 6 loop of 2
main thread print 7 loop of 2
main thread print 8 loop of 2
main thread print 9 loop of 2

main thread print 99 loop of 2
main thread print 100 loop of 2
sub thread print 1 loop of 2
sub thread print 2 loop of 2
sub thread print 3 loop of 2
sub thread print 4 loop of 2
sub thread print 5 loop of 2
sub thread print 6 loop of 2
sub thread print 7 loop of 2
sub thread print 8 loop of 2
sub thread print 9 loop of 2
sub thread print 10 loop of 2
main thread print 1 loop of 3
main thread print 2 loop of 3
main thread print 3 loop of 3

 

使用Condition比传统的好处

可以实现多路Condition ,在javaAPI中有

class BoundedBuffer {
   final Lock lock = new ReentrantLock();
   final Condition notFull  = lock.newCondition(); 
   final Condition notEmpty = lock.newCondition(); 

   final Object[] items = new Object[100];
   int putptr, takeptr, count;

   public void put(Object x) throws InterruptedException {
     lock.lock();
     try {
       while (count == items.length)
         notFull.await();
       items[putptr] = x;
       if (++putptr == items.length) putptr = 0;
       ++count;
       notEmpty.signal();
     } finally {
       lock.unlock();
     }
   }

   public Object take() throws InterruptedException {
     lock.lock();
     try {
       while (count == 0)
         notEmpty.await();
       Object x = items[takeptr];
       if (++takeptr == items.length) takeptr = 0;
       --count;
       notFull.signal();
       return x;
     } finally {
       lock.unlock();
     }
   }
 }

使用多路Condition,可以扩展上述的一个例子,老大打印完 -> 老二   老二-> 老三  老三-> 老大  老大-> 老二…

 

/** * 第一个线程循环100次,第二个线程循环10次,第三个线程循环20次,如此循环50次,请写出程序 这里使用Condition * * @author Administrator * */
public class ThreeConditionCommunication { public static void main(String[] args) { final Business2 business = new Business2(); new Thread(new Runnable() { @Override public void run() { for (int i = 1; i <= 50; i++) { business.sub2(i); } } }).start(); new Thread(new Runnable() { @Override public void run() { for (int i = 1; i <= 50; i++) { business.sub3(i); } } }).start(); for (int i = 1; i <= 50; i++) { business.main(i); } } } class Business2 { Lock lock = new ReentrantLock(); Condition condition1 = lock.newCondition(); Condition condition2 = lock.newCondition(); Condition condition3 = lock.newCondition(); private int shoudeSub = 1; public void sub2(int i) { lock.lock(); try { while (shoudeSub != 2) { // 这里也可以用 if ,用while比较好一些 As in the one argument // version, interrupts and spurious wakeups are // possible, and this method should always be // used in a loop
                try { // 防止线程有可能被假唤醒 (while放在这里提现了水准)
                    condition2.await();  //等待
                } catch (InterruptedException e) { e.printStackTrace(); } } for (int j = 1; j <= 100; j++) { System.out.println("sub2 thread sequence of " + j + ", loop of " + i); } shoudeSub = 3; condition3.signal();//唤醒
        } finally{ lock.unlock(); } } public void sub3(int i) { lock.lock(); try { while (shoudeSub != 3) { // 这里也可以用 if ,用while比较好一些 As in the one argument // version, interrupts and spurious wakeups are // possible, and this method should always be // used in a loop
                try { // 防止线程有可能被假唤醒 (while放在这里提现了水准)
                    condition3.await();  //等待
                } catch (InterruptedException e) { e.printStackTrace(); } } for (int j = 1; j <= 20; j++) { System.out.println("sub3 thread sequence of " + j + ", loop of " + i); } shoudeSub = 1; condition1.signal();//唤醒
        } finally{ lock.unlock(); } } public void main(int i) { lock.lock(); try { while (shoudeSub != 1) { try { condition1.await(); } catch (InterruptedException e) { e.printStackTrace(); } } for (int j = 1; j <= 10; j++) { System.out.println("main thread sequence of " + j + ", loop of "
                        + i); } shoudeSub = 2; condition2.signal(); } finally{ lock.unlock(); } } /** * * synchronized (obj) { 这里的obj与obj.wait必须相同,否则会抛异常 while (<condition does * not hold>) obj.wait(); ... // Perform action appropriate to condition } */ }

 

Condition的一个例子:

 编写一个程序,开启3个线程 ,这三个线程的ID分别为 A,B, C,每个线程将自己的ID 在屏幕上打印10遍,要求输出的结果必须按顺序显示。

如:ABCABCABC…..依次递归

这里实现了一个比题目稍微难得例子,A 打印10次,B打印20次 ,C打印5次依次递归20次。

package com.java.juc;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class TestAlternative {

    public static void main(String[] args) {
        final Alternative alternative = new Alternative();
        new Thread(new Runnable(){
            @Override
            public void run() {
                for(int i = 1;i<=20;i++){
                    alternative.loopA(i);
                }
            }
        },"A").start();
        new Thread(new Runnable(){
            @Override
            public void run() {
                for(int i = 1;i<=20;i++){
                    alternative.loopB(i);
                }
            }
        },"B").start();
        new Thread(new Runnable(){
            @Override
            public void run() {
                for(int i = 1;i<=20;i++){
                    alternative.loopC(i);
                    System.out.println("-----------------");
                }
            }
        },"C").start();
        
    }

}

class Alternative{
    
    private int number = 1;
    private Lock lock = new ReentrantLock();
    private Condition condition1 = lock.newCondition();
    private Condition condition2 = lock.newCondition();
    private Condition condition3 = lock.newCondition();
    
    void loopA(int outerLoop){
        lock.lock();
        try{
            while(number != 1){
                condition1.await();
            }
            for(int i = 1;i<=10;i++){
                System.out.println(Thread.currentThread().getName() + "\t" + i + "\t" + outerLoop);
            }
            number = 2;
            condition2.signal();
        }catch(Exception e){
        }finally {
            lock.unlock();
        }
    }
    
    void loopB(int outerLoop){
        lock.lock();
        try{
            while(number != 2){
                condition2.await();
            }
            for(int i = 1;i<=20;i++){
                System.out.println(Thread.currentThread().getName() + "\t" + i + "\t" + outerLoop);
            }
            number = 3;
            condition3.signal();
        }catch(Exception e){
            
        }finally{
            lock.unlock();
        }
    }
    void loopC(int outerLoop){
        lock.lock();
        try{
            while(number != 3){
                condition3.await();
            }
            for(int i = 1;i<=5;i++){
                System.out.println(Thread.currentThread().getName() + "\t" + i + "\t" + outerLoop);
            }
            number = 1;
            condition1.signal();
        }catch(Exception e){
            
        }finally{
            lock.unlock();
        }
    }
}

 

 

java5的Semaphere同步工具

  Semaphore实现信号灯

  Semaphore可以维护当前访问自身的线程个数,并提供了同步机制。使用Semaphore可以控制同时访问资源的线程个数,例如,实现一个文件允许的并发访问数。

  假设一个文件同时可以被3个人访问,来了5个人,同时只有3个访问。3个中任何一个出来后,等待的就可以进去了。

public class SemaphoreTest {

    public static void main(String[] args) {
        ExecutorService service = Executors.newCachedThreadPool();
        final  Semaphore sp = new Semaphore(3);  //还有一个构造方法,Semaphore(int permits, boolean fair)  fair参数为true表示谁先来谁先进,一种公平的原则 
        for(int i=0;i<10;i++){
            Runnable runnable = new Runnable(){
                    public void run(){
                    try {
                        sp.acquire();
                    } catch (InterruptedException e1) {
                        e1.printStackTrace();
                    }
                    System.out.println("线程" + Thread.currentThread().getName() + 
                            "进入,当前已有" + (3-sp.availablePermits()) + "个并发");
                    try {
                        Thread.sleep((long)(Math.random()*10000));
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println("线程" + Thread.currentThread().getName() + 
                            "即将离开");                    
                    sp.release();
                    //下面代码有时候执行不准确,因为其没有和上面的代码合成原子单元
                    System.out.println("线程" + Thread.currentThread().getName() + 
                            "已离开,当前已有" + (3-sp.availablePermits()) + "个并发");                    
                }
            };
            service.execute(runnable);            
        }
    }
}

 

 

单个信号量的Semaphore对象可以实现互斥锁的功能,并且可以是由一个线程获得了 “锁”,再由另外一个线程释放”锁”,这可应用于死锁恢复的一些场合。

 

java5 的CyclicBarrier同步工具

/**
 * 表示大家彼此等待,大家集合好后才开始出发,分散活动后又在指定地点集合碰面,
 * 这就好比整个公司的人员利用周末时间集体郊游一样,先各自从家出发到公司集合后,
 * 再同时出发到公园游玩,在指定地点集合后再同时开始就餐,…。
 * @author Administrator
 *
 */
public class CyclicBarrierTest {

    public static void main(String[] args) {
        ExecutorService threadPool = Executors.newCachedThreadPool();
        final CyclicBarrier cb = new CyclicBarrier(3);
        for (int i = 0; i < 3; i++) {
            Runnable runnable = new Runnable() {
                public void run() {
                    try {
                        Thread.sleep((long) (Math.random() * 10000));
                        System.out.println("线程"+ Thread.currentThread().getName()
                                        + "即将到达集合点1,当前已有 "+(cb.getNumberWaiting()+1) +"个已经到达,"+(cb.getNumberWaiting() == 2?"都到齐了,继续走啊":"正在等待"));
                        cb.await();
                        
                        Thread.sleep((long) (Math.random() * 10000));
                        System.out.println("线程"+ Thread.currentThread().getName()
                                + "即将到达集合点2,当前已有 "+(cb.getNumberWaiting()+1) +"个已经到达,"+(cb.getNumberWaiting() == 2?"都到齐了,继续走啊":"正在等待"));
                        cb.await();
                        
                        Thread.sleep((long) (Math.random() * 10000));
                        System.out.println("线程"+ Thread.currentThread().getName()
                                + "即将到达集合点3,当前已有 "+(cb.getNumberWaiting()+1) +"个已经到达,"+(cb.getNumberWaiting() == 2?"都到齐了,继续走啊":"正在等待"));
                        cb.await();
                    } catch (Exception e) {
                        // TODO: handle exception
                    }
                }
            };
            threadPool.execute(runnable);
        }
        threadPool.shutdown();
    }

}

 

 

 

java5的CountDownLatch同步工具

  CountDownLatch : 闭锁,在完成某些运算时,只有其他所有线程的运算全部完成,当前运算才继续执行

  CountDownLatch应用1:比如要统计5个线程并发的运行时间,即线程的开始时间与最后一个线程的运行结束时间的间隔时间。

  

package com.java.juc;

import java.util.concurrent.CountDownLatch;

public class TestCountDownLatch2 {

    public static void main(String[] args) {

        CountDownLatch latch = new CountDownLatch(5);
        LatchDemo2 ld = new LatchDemo2(latch);
        
        long start = System.currentTimeMillis();
        for(int i = 0;i<5;i++){
            new Thread(ld).start();
        }
        try {
            latch.await();   //先执行完成的线程需要等待还没有执行完的线程
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        
        long end  = System.currentTimeMillis();
        System.out.println("cost: "+ (end - start));
    }

}

class LatchDemo2 implements Runnable{
    private CountDownLatch latch;
    
    public LatchDemo2(CountDownLatch latch) {
        this.latch = latch;
    }
    
    @Override
    public void run() {

        try {
            synchronized(this){
                for(int i = 0;i<50000;i++){  //找出50000以内的所有偶数
                    if(i % 2 == 0){
                        System.out.println(i);
                    }
                }
            }
        } finally{
            latch.countDown();   //为了让这一句一定执行可以放在finally中
        }
    }
}

 

 

 

  还可以应用于计算所有种类商品的平均销售总和,平均销售时间等,如果使用单线程计算效率非常低,相当于是串行计算。可以使用并行计算,按照商品种类进行区分并行的计算。可以将最终的每个线程的计算结果在进行汇总,可以得出最终的的总的销售数据,这就可以使用CountDownLatch进行操作,可以大幅度提高效率。(京东)

《Java多线程与并发库高级应用-工具类介绍》

 

应用:运动员跑步比赛,得到最终的排名需要在所有运动员都完成之后,公布最终的结果。

/**
 * 犹如倒计时计数器,调用CountDownLatch对象的countDown方法就将计数器减一,
 * 当计数器到达0时,则所有等待者或单个等待者开始执行。
 * 可以实现一个人(也可以是多个人)等待其他所有人都来通知他,可以实现一个人通知多个人的效果,
 * 类似裁判一声口令,运动员同时开始奔跑,或者所有运动员都跑到
 * 终点后裁判才可以公布结果。还可以实现一个计划需要多个领导都签字后
 * 才能继续向下实施的情况
 * @author Administrator
 *
 */
public class CountDownLetchTest {

    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final CountDownLatch cdOrder = new CountDownLatch(1); //计数器初始值 1
        final CountDownLatch cdAnswer = new CountDownLatch(3);
        for(int i = 0;i<3;i++){
            Runnable runnable = new Runnable() {
                
                @Override
                public void run() {
                    try {
                        System.out.println("线程"+Thread.currentThread().getName()
                                +"正准备接受命令");
                        cdOrder.await();
                        System.out.println("线程"+Thread.currentThread().getName()
                                +"已接受命令");
                        Thread.sleep((long)(Math.random()*10000));
                        System.out.println("线程"+Thread.currentThread().getName()
                                +"回应命令处理结果");
                        cdAnswer.countDown();
                    } catch (Exception e) {
                        // TODO: handle exception
                    }
                }
            };
            executorService.execute(runnable);
        }
        try {
            Thread.sleep((long)(Math.random()*10000));
            System.out.println("线程"+Thread.currentThread().getName()
                    +"即将发布命令");
            cdOrder.countDown();  //计数器数值减 1
            System.out.println("线程"+Thread.currentThread().getName()
                    +"已发送命令,正在等待结果");
            cdAnswer.await();
            System.out.println("线程"+Thread.currentThread().getName()
                    +"已收到所有响应结果");
        } catch (InterruptedException e) {
            // TODO Auto-generated catch block
            e.printStackTrace();
        }
        executorService.shutdown();
    }
}

 java 中CycliBarriar 和 CountDownLatch 有什么区别?

  这两个的区别是CyclicBarrier 可以重复使用已经通过的障碍,而 CountdownLatch 不能重复使用。

 

 

java5的Exchanger同步工具

/**
 * 用于实现两个人之间的数据交换,每个人在完成一定的事物后想与对方交换数据,第一个先拿出数据的人将
 * 一直等待第二个人拿着数据到来时,才能彼此交换数据。
 * @author Administrator
 *
 */
public class ExchangerTest {

    public static void main(String[] args) {
        ExecutorService executorService = Executors.newCachedThreadPool();
        final Exchanger exchanger = new Exchanger();
        executorService.execute(new Runnable() {

            @Override
            public void run() {
                try {
                    String data1 = "aaa";
                    System.out.println("线程" + Thread.currentThread().getName()
                            + "正在把数据" + data1 + "换出去");
                    Thread.sleep((long) (Math.random() * 10000));
                    String data2 = (String) exchanger.exchange(data1);
                    System.out.println("线程" + Thread.currentThread().getName()
                            + "换回的数据为 " + data2);
                } catch (Exception e) {
                    // TODO: handle exception
                }
            }
        });
        executorService.execute(new Runnable() {

            @Override
            public void run() {
                try {
                    String data1 = "bbb";
                    System.out.println("线程" + Thread.currentThread().getName()
                            + "正在把数据" + data1 + "换出去");
                    Thread.sleep((long) (Math.random() * 10000));
                    String data2 = (String) exchanger.exchange(data1);
                    System.out.println("线程" + Thread.currentThread().getName()
                            + "换回的数据为 " + data2);
                } catch (Exception e) {
                    // TODO: handle exception
                }
            }
        });
    }

}

 

打印结果为:

线程 pool-1-thread-1正把数据 aaa 换出去

线程 pool-1-thread-2正把数据 bbb 换出去

线程 pool-1-thread-2换回的数据为 aaa

线程 pool-1-thread-1换回的数据为 bbb

 

 

 

 

 

 

《Java多线程与并发库高级应用-工具类介绍》

    原文作者:wq3435
    原文地址: https://www.cnblogs.com/wq3435/p/6037082.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞