引言
上一节《TaskScheduler源码与任务提交原理浅析1》介绍了TaskScheduler的创建过程,在这一节中,我将承接《Stage生成和Stage源码浅析》中的submitMissingTasks函数继续介绍task的创建和分发工作。
DAGScheduler中的submitMissingTasks函数
如果一个Stage的所有的parent stage都已经计算完成或者存在于cache中,那么他会调用submitMissingTasks来提交该Stage所包含的Tasks。
submitMissingTasks负责创建新的Task。
Spark将由Executor执行的Task分为ShuffleMapTask和ResultTask两种。
每个Stage生成Task的时候根据Stage中的isShuffleMap标记确定是否为ShuffleMapStage,如果标记为真,则这个Stage输出的结果会经过Shuffle阶段作为下一个Stage的输入,创建ShuffleMapTask;否则是ResultStage,这样会创建ResultTask,Stage的结果会输出到Spark空间;最后,Task是通过taskScheduler.submitTasks来提交的。
计算流程
submitMissingTasks的计算流程如下:
- 首先得到RDD中需要计算的partition,对于Shuffle类型的stage,需要判断stage中是否缓存了该结果;对于Result类型的Final Stage,则判断计算Job中该partition是否已经计算完成。
- 序列化task的binary。Executor可以通过广播变量得到它。每个task运行的时候首先会反序列化。这样在不同的executor上运行的task是隔离的,不会相互影响。
- 为每个需要计算的partition生成一个task:对于Shuffle类型依赖的Stage,生成ShuffleMapTask类型的task;对于Result类型的Stage,生成一个ResultTask类型的task。
- 确保Task是可以被序列化的。因为不同的cluster有不同的taskScheduler,在这里判断可以简化逻辑;保证TaskSet的task都是可以序列化的。
- 通过TaskScheduler提交TaskSet。
部分代码
下面是submitMissingTasks判断是否为ShuffleMapStage的部分代码,其中部分参数说明在注释中:
val tasks: Seq[Task[_]] = if (stage.isShuffleMap) {
partitionsToCompute.map { id =>
val locs = getPreferredLocs(stage.rdd, id)
val part = stage.rdd.partitions(id)
//stage.id:Stage的序号
//taskBinary:这个在下面具体介绍
//part:RDD对应的partition
//locs:最适合的执行位置
new ShuffleMapTask(stage.id, taskBinary, part, locs)
}
} else {
val job = stage.resultOfJob.get
partitionsToCompute.map { id =>
val p: Int = job.partitions(id)
val part = stage.rdd.partitions(p)
val locs = getPreferredLocs(stage.rdd, p)
//p:partition索引,表示从哪个partition读取数据
//id:输出的分区索引,表示reduceID
new ResultTask(stage.id, taskBinary, part, locs, id)
}
}
关于taskBinary参数:这是RDD和ShuffleDependency的广播变量(broadcase version),作为序列化之后的结果。
这里将RDD和其依赖关系进行序列化,在executor运行task之前再进行反序列化。这种方式对不同的task之间提供了较好的隔离。
下面是submitMissingTasks进行任务提交的部分代码:
if (tasks.size > 0) {
logInfo("Submitting " + tasks.size + " missing tasks from " + stage + " (" + stage.rdd + ")")
stage.pendingTasks ++= tasks
logDebug("New pending tasks: " + stage.pendingTasks)
taskScheduler.submitTasks(
new TaskSet(tasks.toArray, stage.id, stage.newAttemptId(), stage.jobId, properties))
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)
logDebug("Stage " + stage + " is actually done; %b %d %d".format(
stage.isAvailable, stage.numAvailableOutputs, stage.numPartitions))
}
TaskSchedulerImpl中的submitTasks
submitTasks的流程如下:
- 任务(tasks)会被包装成TaskSetManager(由于TaskSetManager不是线程安全的,所以源码中需要进行同步)
- TaskSetManager实例通过schedulableBuilder(分为FIFOSchedulableBuilder和FairSchedulableBuilder两种)投入调度池中等待调度
- 任务提交同时启动定时器,如果任务还未被执行,定时器会持续发出警告直到任务被执行
- 调用backend的reviveOffers函数,向backend的driverActor实例发送ReviveOffers消息,driveerActor收到ReviveOffers消息后,调用makeOffers处理函数
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
val manager = createTaskSetManager(taskSet, maxTaskFailures)
activeTaskSets(taskSet.id) = manager
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT, STARVATION_TIMEOUT)
}
hasReceivedTask = true
}
backend.reviveOffers()
}
TaskSetManager调度
每个Stage一经确认,生成相应的TaskSet(即为一组tasks),其对应一个TaskSetManager通过Stage回溯到最源头缺失的Stage提交到调度池pool中,在调度池中,这些TaskSetMananger又会根据Job ID排序,先提交的Job的TaskSetManager优先调度,然后一个Job内的TaskSetManager ID小的先调度,并且如果有未执行完的父母Stage的TaskSetManager,则不会提交到调度池中。
reviveOffers函数代码
下面是CoarseGrainedSchedulerBackend的reviveOffers函数:
override def reviveOffers() {
driverActor ! ReviveOffers
}
driveerActor收到ReviveOffers消息后,调用makeOffers处理函数。
DriverActor的makeOffers函数
makeOffers函数的处理逻辑是:
- 找到空闲的Executor,分发的策略是随机分发的,即尽可能将任务平摊到各个Executor
- 如果有空闲的Executor,就将任务列表中的部分任务利用launchTasks发送给指定的Executor
SchedulerBackend(这里实际是CoarseGrainedSchedulerBackend)负责将新创建的Task分发给Executor,从launchTasks代码中可以看出,在发送LauchTasks指令之前需要将TaskDescription序列化。
// Make fake resource offers on all executors
def makeOffers() {
launchTasks(scheduler.resourceOffers(executorDataMap.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toSeq))
}
TaskSchedulerImpl中的resourceOffers函数
任务是随机分发给各个Executor的,资源分配的工作由resourceOffers函数处理。
正如上面submitTasks函数提到的,在TaskSchedulerImpl中,这一组Task被交给一个新的TaskSetManager实例进行管理,所有的TaskSetManager经由SchedulableBuilder根据特定的调度策略进行排序,在TaskSchedulerImpl的resourceOffers函数
中,当前被选择的TaskSetManager的ResourceOffer函数被调用并返回包含了序列化任务数据的TaskDescription,最后这些TaskDescription再由SchedulerBackend派发到ExecutorBackend去执行。
resourceOffers主要做了3件事:
- 从Workers里面随机抽出一些来执行任务。
- 通过TaskSetManager找出和Worker在一起的Task,最后编译打包成TaskDescription返回。
- 将Worker–>Array[TaskDescription]的映射关系返回。
/**
* Called by cluster manager to offer resources on slaves. We respond by asking our active task
* sets for tasks in order of priority. We fill each node with tasks in a round-robin manner so
* that tasks are balanced across the cluster.
*/
def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
// Mark each slave as alive and remember its hostname
// Also track if new executor is added
var newExecAvail = false
// 遍历worker提供的资源,更新executor相关的映射
for (o <- offers) {
executorIdToHost(o.executorId) = o.host
activeExecutorIds += o.executorId
if (!executorsByHost.contains(o.host)) {
executorsByHost(o.host) = new HashSet[String]()
executorAdded(o.executorId, o.host)
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
}
}
// 从worker当中随机选出一些来,防止任务都堆在一个机器上
// Randomly shuffle offers to avoid always placing tasks on the same set of workers.
val shuffledOffers = Random.shuffle(offers)
// Build a list of tasks to assign to each worker.
// worker的task列表
val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores))
val availableCpus = shuffledOffers.map(o => o.cores).toArray
// getSortedTask函数对taskset进行排序
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
if (newExecAvail) {
taskSet.executorAdded()
}
}
// Take each TaskSet in our scheduling order, and then offer it each node in increasing order
// of locality levels so that it gets a chance to launch local tasks on all of them.
// NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
// 随机遍历抽出来的worker,通过TaskSetManager的resourceOffer,把本地性最高的Task分给Worker
// 本地性是根据当前的等待时间来确定的任务本地性的级别。
// 它的本地性主要是包括四类:PROCESS_LOCAL, NODE_LOCAL, RACK_LOCAL, ANY。
//1. 首先依次遍历 sortedTaskSets, 并对于每个 Taskset, 遍历 TaskLocality
//2. 越 local 越优先, 找不到(launchedTask 为 false)才会到下个 locality 级别
//3. (封装在resourceOfferSingleTaskSet函数)在多次遍历offer list,
//因为一次taskSet.resourceOffer只会占用一个core,
//而不是一次用光所有的 core, 这样有助于一个 taskset 中的 task 比较均匀的分布在workers上
//4. 只有在该taskset, 该locality下, 对所有worker offer都找不到合适的task时,
//才跳到下个 locality 级别
var launchedTask = false
for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
do {
launchedTask = resourceOfferSingleTaskSet(
taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
} while (launchedTask)
}
if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}
TaskDescription代码:
private[spark] class TaskDescription(
val taskId: Long,
val attemptNumber: Int,
val executorId: String,
val name: String,
val index: Int, // Index within this task's TaskSet
_serializedTask: ByteBuffer)
extends Serializable {
// Because ByteBuffers are not serializable, wrap the task in a SerializableBuffer
private val buffer = new SerializableBuffer(_serializedTask)
def serializedTask: ByteBuffer = buffer.value
override def toString: String = "TaskDescription(TID=%d, index=%d)".format(taskId, index)
}
DriverActor的launchTasks函数
launchTasks函数流程:
- launchTasks函数将resourceOffers函数返回的TaskDescription信息进行序列化
- 向executorActor发送封装了serializedTask的LaunchTask消息
由于受到Akka Frame Size尺寸的限制,如果发送数据过大,会被截断。
// Launch tasks returned by a set of resource offers
def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
val ser = SparkEnv.get.closureSerializer.newInstance()
val serializedTask = ser.serialize(task)
if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
val taskSetId = scheduler.taskIdToTaskSetId(task.taskId)
scheduler.activeTaskSets.get(taskSetId).foreach { taskSet =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
"spark.akka.frameSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
AkkaUtils.reservedSizeBytes)
taskSet.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK
executorData.executorActor ! LaunchTask(new SerializableBuffer(serializedTask))
}
}
}
参考资料
Spark大数据处理,高彦杰著,机械工业出版社
Spark技术内幕: Task向Executor提交的源码解析
Spark源码系列(三)作业运行过程
转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页