本文基于Spark 2.1.0版本
新手首先要明白几个配置:
spark.default.parallelism:(默认的并发数)
如果配置文件spark-default.conf中没有显示的配置,则按照如下规则取值:
本地模式(不会启动executor,由SparkSubmit进程生成指定数量的线程数来并发):
spark-shell spark.default.parallelism = 1
spark-shell –master local[N] spark.default.parallelism = N (使用N个核)
spark-shell –master local spark.default.parallelism = 1
伪集群模式(x为本机上启动的executor数,y为每个executor使用的core数,
z为每个 executor使用的内存)
spark-shell –master local-cluster[x,y,z] spark.default.parallelism = x * y
mesos 细粒度模式
Mesos fine grained mode spark.default.parallelism = 8
其他模式(这里主要指yarn模式,当然standalone也是如此)
Others: total number of cores on all executor nodes or 2, whichever is larger
spark.default.parallelism = max(所有executor使用的core总数, 2)
经过上面的规则,就能确定了spark.default.parallelism的默认值(前提是配置文件spark-default.conf中没有显示的配置,如果配置了,则spark.default.parallelism = 配置的值)
还有一个配置比较重要,spark.files.maxPartitionBytes = 128 M(默认)
The maximum number of bytes to pack into a single partition when reading files.
代表着rdd的一个分区能存放数据的最大字节数,如果一个400m的文件,只分了两个区,则在action时会发生错误。
当一个spark应用程序执行时,生成spark.context,同时会生成两个参数,由上面得到的spark.default.parallelism推导出这两个参数的值
sc.defaultParallelism = spark.default.parallelism
sc.defaultMinPartitions = min(spark.default.parallelism,2)
当sc.defaultParallelism和sc.defaultMinPartitions最终确认后,就可以推算rdd的分区数了。
有两种产生rdd的方式:
1,通过scala 集合方式parallelize生成rdd,
如, val rdd = sc.parallelize(1 to 10)
这种方式下,如果在parallelize操作时没有指定分区数,则
rdd的分区数 = sc.defaultParallelism
2,通过textFile方式生成的rdd,
如, val rdd = sc.textFile(“path/file”)
有两种情况:
a,从本地文件file:///生成的rdd,操作时如果没有指定分区数,则默认分区数规则为:
(按照官网的描述,本地file的分片规则,应该按照hdfs的block大小划分,但实测的结果是固定按照32M来分片,可能是bug,不过不影响使用,因为spark能用所有hadoop接口支持的存储系统,所以spark textFile使用hadoop接口访问本地文件时和访问hdfs还是有区别的)
rdd的分区数 = max(本地file的分片数, sc.defaultMinPartitions)
b,从hdfs分布式文件系统hdfs://生成的rdd,操作时如果没有指定分区数,则默认分区数规则为:
rdd的分区数 = max(hdfs文件的block数目, sc.defaultMinPartitions)
补充:
1,如果使用如下方式,从HBase的数据表转换为RDD,则该RDD的分区数为该Table的region数。
String tableName =”pic_test2″;
conf.set(TableInputFormat.INPUT_TABLE,tableName);
conf.set(TableInputFormat.SCAN,convertScanToString(scan));
JavaPairRDD hBaseRDD = sc.newAPIHadoopRDD(conf,
TableInputFormat.class,ImmutableBytesWritable.class,
Result.class);
Hbase Table:pic_test2的region为10,则hBaseRDD的分区数也为10。
2,如果使用如下方式,通过获取json(或者parquet等等)文件转换为DataFrame,则该DataFrame的分区数和该文件在文件系统中存放的Block数量对应。
Dataset<Row> df = spark.read().json(“examples/src/main/resources/people.json”);
people.json大小为300M,在HDFS中占用了2个blocks,则该DataFrame df分区数为2。
3,Spark Streaming获取Kafka消息对应的分区数,不在本文讨论。
欢迎指正,转载请标明作者和出处,谢谢。