基于Kafka+SparkStreaming+HBase实时点击流案例

前言

最近在专注Spark开发,记录下自己的工作和学习路程,希望能跟大家互相交流成长
本文章更倾向于实战案例,涉及框架原理及基本应用还请读者自行阅读相关文章,相关在本文章最后参考资料中
关于Zookeeper/Kafka/HBase/Hadoop相关集群环境搭建作者会陆续更新
本文章发布后会及时更新文章中出现的错误及增加内容,欢迎大家订阅
QQ:86608625 微信:guofei1990123

背景

Kafka实时记录从数据采集工具Flume或业务系统实时接口收集数据,并作为消息缓冲组件为上游实时计算框架提供可靠数据支撑,Spark 1.3版本后支持两种整合Kafka机制(Receiver-based Approach 和 Direct Approach),具体细节请参考文章最后官方文档链接,数据存储使用HBase

实现思路

  1. 实现Kafka消息生产者模拟器
  2. Spark-Streaming采用Direct Approach方式实时获取Kafka中数据
  3. Spark-Streaming对数据进行业务计算后数据存储到HBase

本地虚拟机集群环境配置

由于笔者机器性能有限,hadoop/zookeeper/kafka集群都搭建在一起主机名分别为hadoop1,hadoop2,hadoop3; hbase为单节点 在hadoop1

缺点及不足

由于笔者技术有限,代码设计上有部分缺陷,比如spark-streaming计算后数据保存hbase逻辑性能很低,希望大家多提意见以便小编及时更正

代码实现

Kafka消息模拟器

package clickstream
import java.util.{Properties, Random, UUID}
import kafka.producer.{KeyedMessage, Producer, ProducerConfig}
import org.codehaus.jettison.json.JSONObject

/**  * 
Created by 郭飞 on 2016/5/31.  
*/
object KafkaMessageGenerator {
  private val random = new Random()
  private var pointer = -1
  private val os_type = Array(
    "Android", "IPhone OS",
    "None", "Windows Phone")

  def click() : Double = {
    random.nextInt(10)
  }

  def getOsType() : String = {
    pointer = pointer + 1
    if(pointer >= os_type.length) {
      pointer = 0
      os_type(pointer)
    } else {
      os_type(pointer)
    }
  }

  def main(args: Array[String]): Unit = {
    val topic = "user_events"
    //本地虚拟机ZK地址
    val brokers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"
    val props = new Properties()
    props.put("metadata.broker.list", brokers)
    props.put("serializer.class", "kafka.serializer.StringEncoder")

    val kafkaConfig = new ProducerConfig(props)
    val producer = new Producer[String, String](kafkaConfig)

    while(true) {
      // prepare event data
      val event = new JSONObject()
      event
        .put("uid", UUID.randomUUID())//随机生成用户id
        .put("event_time", System.currentTimeMillis.toString) //记录时间发生时间
        .put("os_type", getOsType) //设备类型
        .put("click_count", click) //点击次数

      // produce event message
      producer.send(new KeyedMessage[String, String](topic, event.toString))
      println("Message sent: " + event)

      Thread.sleep(200)
    }
  }
}

Spark-Streaming主类

package clickstream
import kafka.serializer.StringDecoder
import net.sf.json.JSONObject
import org.apache.hadoop.hbase.client.{HTable, Put}
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.hbase.{HBaseConfiguration, TableName}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
  * Created by 郭飞 on 2016/5/31.
  */
object PageViewStream {
  def main(args: Array[String]): Unit = {
    var masterUrl = "local[2]"
    if (args.length > 0) {
      masterUrl = args(0)
    }

    // Create a StreamingContext with the given master URL
    val conf = new SparkConf().setMaster(masterUrl).setAppName("PageViewStream")
    val ssc = new StreamingContext(conf, Seconds(5))

    // Kafka configurations
    val topics = Set("PageViewStream")
    //本地虚拟机ZK地址
    val brokers = "hadoop1:9092,hadoop2:9092,hadoop3:9092"
    val kafkaParams = Map[String, String](
      "metadata.broker.list" -> brokers,
      "serializer.class" -> "kafka.serializer.StringEncoder")

    // Create a direct stream
    val kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics)

    val events = kafkaStream.flatMap(line => {
      val data = JSONObject.fromObject(line._2)
      Some(data)
    })
    // Compute user click times
    val userClicks = events.map(x => (x.getString("uid"), x.getInt("click_count"))).reduceByKey(_ + _)
    userClicks.foreachRDD(rdd => {
      rdd.foreachPartition(partitionOfRecords => {
        partitionOfRecords.foreach(pair => {
          //Hbase配置
          val tableName = "PageViewStream"
          val hbaseConf = HBaseConfiguration.create()
          hbaseConf.set("hbase.zookeeper.quorum", "hadoop1:9092")
          hbaseConf.set("hbase.zookeeper.property.clientPort", "2181")
          hbaseConf.set("hbase.defaults.for.version.skip", "true")
          //用户ID
          val uid = pair._1
          //点击次数
          val click = pair._2
          //组装数据
          val put = new Put(Bytes.toBytes(uid))
          put.add("Stat".getBytes, "ClickStat".getBytes, Bytes.toBytes(click))
          val StatTable = new HTable(hbaseConf, TableName.valueOf(tableName))
          StatTable.setAutoFlush(false, false)
          //写入数据缓存
          StatTable.setWriteBufferSize(3*1024*1024)
          StatTable.put(put)
          //提交
          StatTable.flushCommits()
        })
      })
    })
    ssc.start()
    ssc.awaitTermination()

  }

}

Maven POM文件

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.guofei.spark</groupId>
  <artifactId>RiskControl</artifactId>
  <version>1.0-SNAPSHOT</version>
  <packaging>jar</packaging>

  <name>RiskControl</name>
  <url>http://maven.apache.org</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  </properties>

  <dependencies>
    <!--Spark core 及 streaming -->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.10</artifactId>
      <version>1.3.0</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_2.10</artifactId>
      <version>1.3.0</version>
    </dependency>
    <!-- Spark整合Kafka-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming-kafka_2.10</artifactId>
      <version>1.3.0</version>
    </dependency>

    <!-- 整合Hbase-->
    <dependency>
      <groupId>org.apache.hbase</groupId>
      <artifactId>hbase</artifactId>
      <version>0.96.2-hadoop2</version>
      <type>pom</type>
    </dependency>
    <!--Hbase依赖 -->
    <dependency>
      <groupId>org.apache.hbase</groupId>
      <artifactId>hbase-server</artifactId>
      <version>0.96.2-hadoop2</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hbase</groupId>
      <artifactId>hbase-client</artifactId>
      <version>0.96.2-hadoop2</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hbase</groupId>
      <artifactId>hbase-common</artifactId>
      <version>0.96.2-hadoop2</version>
    </dependency>
    <dependency>
      <groupId>commons-io</groupId>
      <artifactId>commons-io</artifactId>
      <version>1.3.2</version>
    </dependency>
    <dependency>
      <groupId>commons-logging</groupId>
      <artifactId>commons-logging</artifactId>
      <version>1.1.3</version>
    </dependency>
    <dependency>
      <groupId>log4j</groupId>
      <artifactId>log4j</artifactId>
      <version>1.2.17</version>
    </dependency>

    <dependency>
      <groupId>com.google.protobuf</groupId>
      <artifactId>protobuf-java</artifactId>
      <version>2.5.0</version>
    </dependency>
    <dependency>
      <groupId>io.netty</groupId>
      <artifactId>netty</artifactId>
      <version>3.6.6.Final</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hbase</groupId>
      <artifactId>hbase-protocol</artifactId>
      <version>0.96.2-hadoop2</version>
    </dependency>
    <dependency>
      <groupId>org.apache.zookeeper</groupId>
      <artifactId>zookeeper</artifactId>
      <version>3.4.5</version>
    </dependency>
    <dependency>
      <groupId>org.cloudera.htrace</groupId>
      <artifactId>htrace-core</artifactId>
      <version>2.01</version>
    </dependency>
    <dependency>
      <groupId>org.codehaus.jackson</groupId>
      <artifactId>jackson-mapper-asl</artifactId>
      <version>1.9.13</version>
    </dependency>
    <dependency>
      <groupId>org.codehaus.jackson</groupId>
      <artifactId>jackson-core-asl</artifactId>
      <version>1.9.13</version>
    </dependency>
    <dependency>
      <groupId>org.codehaus.jackson</groupId>
      <artifactId>jackson-jaxrs</artifactId>
      <version>1.9.13</version>
    </dependency>
    <dependency>
      <groupId>org.codehaus.jackson</groupId>
      <artifactId>jackson-xc</artifactId>
      <version>1.9.13</version>
    </dependency>
    <dependency>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-api</artifactId>
      <version>1.6.4</version>
    </dependency>
    <dependency>
      <groupId>org.slf4j</groupId>
      <artifactId>slf4j-log4j12</artifactId>
      <version>1.6.4</version>
    </dependency>

    <!-- Hadoop依赖包-->
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>2.6.4</version>
    </dependency>
    <dependency>
      <groupId>commons-configuration</groupId>
      <artifactId>commons-configuration</artifactId>
      <version>1.6</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-auth</artifactId>
      <version>2.6.4</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-common</artifactId>
      <version>2.6.4</version>
    </dependency>

    <dependency>
      <groupId>net.sf.json-lib</groupId>
      <artifactId>json-lib</artifactId>
      <version>2.4</version>
      <classifier>jdk15</classifier>
    </dependency>

    <dependency>
      <groupId>org.codehaus.jettison</groupId>
      <artifactId>jettison</artifactId>
      <version>1.1</version>
    </dependency>

    <dependency>
      <groupId>redis.clients</groupId>
      <artifactId>jedis</artifactId>
      <version>2.5.2</version>
    </dependency>
    <dependency>
      <groupId>org.apache.commons</groupId>
      <artifactId>commons-pool2</artifactId>
      <version>2.2</version>
    </dependency>
  </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <testSourceDirectory>src/test/scala</testSourceDirectory>
    <plugins>
      <plugin>
        <groupId>net.alchim31.maven</groupId>
        <artifactId>scala-maven-plugin</artifactId>
        <version>3.2.2</version>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
            <configuration>
              <args>
                <arg>-make:transitive</arg>
                <arg>-dependencyfile</arg>
                <arg>${project.build.directory}/.scala_dependencies</arg>
              </args>
            </configuration>
          </execution>
        </executions>
      </plugin>

      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>2.4.3</version>
        <executions>
          <execution>
            <phase>package</phase>
            <goals>
              <goal>shade</goal>
            </goals>
            <configuration>
              <filters>
                <filter>
                  <artifact>*:*</artifact>
                  <excludes>
                    <exclude>META-INF/*.SF</exclude>
                    <exclude>META-INF/*.DSA</exclude>
                    <exclude>META-INF/*.RSA</exclude>
                  </excludes>
                </filter>
              </filters>
            </configuration>
          </execution>
        </executions>
      </plugin>
    </plugins>
  </build>
</project>

FAQ

  1. Maven导入json-lib报错
    Failure to find net.sf.json-lib:json-lib:jar:2.3 in
    http://repo.maven.apache.org/maven2 was cached in the local
    repository
    解决:
    http://stackoverflow.com/questions/4173214/maven-missing-net-sf-json-lib
    <dependency>
    <groupId>net.sf.json-lib</groupId>
    <artifactId>json-lib</artifactId>
    <version>2.4</version>
    <classifier>jdk15</classifier>
    </dependency>
  2. 执行Spark-Streaming程序报错
    org.apache.spark.SparkException: Task not serializable
userClicks.foreachRDD(rdd => { 
rdd.foreachPartition(partitionOfRecords => { 
partitionOfRecords.foreach(
这里面的代码中所包含的对象必须是序列化的
这里面的代码中所包含的对象必须是序列化的
这里面的代码中所包含的对象必须是序列化的
}) 
}) 
})
  1. 执行Maven打包报错,找不到依赖的jar包
    error:not found: object kafka
    ERROR import kafka.javaapi.producer.Producer
    解决:win10本地系统 用户/郭飞/.m2/ 目录含有中文

参考文档

    原文作者:MichaelFly
    原文地址: https://www.jianshu.com/p/ccba410462ba
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞