问题描述
运行spark sql on yarn的时候发现yarn client模式跑的好好的程序,换成yarn cluster模式就不正确了,原因是hive-site.xml这文件没有被加载到Driver(也就是这时候的ApplicationMaster)的classpath里面去,貌似是直接连接了一个默认的am-container本地metastore。
看下官方文档 2.1.2 – 2.1.1 – 2.0.2 貌似都是同样一句话将hive-site.xml放入conf/
下就行了。我也真真的造作了啊。。
Configuration of Hive is done by placing your hive-site.xml, core-site.xml (for security configuration), and hdfs-site.xml (for HDFS configuration) file in conf/.
测试程序
如下,简单到羞涩
import org.apache.spark.sql.SparkSession
object ShowHiveTables {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder()
.appName("Show Hive Tables")
.enableHiveSupport()
.getOrCreate()
spark.sql("show tables").show()
spark.stop()
}
}
扒下spark源码
$SPARK_HOME/conf下的.xml文件果然是不会上传的 基于这个commit: b04eefae49b96e2ef5a8d75334db29ef4e19ce58给出
org.apache.spark.deploy.yarn.Client
/**
* Create an archive with the config files for distribution.
*
* These will be used by AM and executors. The files are zipped and added to the job as an
* archive, so that YARN will explode it when distributing to AM and executors. This directory
* is then added to the classpath of AM and executor process, just to make sure that everybody
* is using the same default config.
*
* This follows the order of precedence set by the startup scripts, in which HADOOP_CONF_DIR
* shows up in the classpath before YARN_CONF_DIR.
*
* Currently this makes a shallow copy of the conf directory. If there are cases where a
* Hadoop config directory contains subdirectories, this code will have to be fixed.
*
* The archive also contains some Spark configuration. Namely, it saves the contents of
* SparkConf in a file to be loaded by the AM process.
*/
private def createConfArchive(): File = {
val hadoopConfFiles = new HashMap[String, File]()
// 处理了HADOOP_CONF_DIR下的配置文件
Seq("HADOOP_CONF_DIR", "YARN_CONF_DIR").foreach { envKey =>
sys.env.get(envKey).foreach { path =>
val dir = new File(path)
if (dir.isDirectory()) {
val files = dir.listFiles()
if (files == null) {
logWarning("Failed to list files under directory " + dir)
} else {
files.foreach { file =>
if (file.isFile && !hadoopConfFiles.contains(file.getName())) {
hadoopConfFiles(file.getName()) = file
}
}
}
}
}
}
val confArchive = File.createTempFile(LOCALIZED_CONF_DIR, ".zip",
new File(Utils.getLocalDir(sparkConf)))
val confStream = new ZipOutputStream(new FileOutputStream(confArchive))
try {
confStream.setLevel(0)
// Upload $SPARK_CONF_DIR/log4j.properties file to the distributed cache to make sure that
// the executors will use the latest configurations instead of the default values. This is
// required when user changes log4j.properties directly to set the log configurations. If
// configuration file is provided through --files then executors will be taking configurations
// from --files instead of $SPARK_CONF_DIR/log4j.properties.
// Also upload metrics.properties to distributed cache if exists in classpath.
// If user specify this file using --files then executors will use the one
// from --files instead.
// 处理$SPARK_CONF_DIR下的文件,但是只有下面这两个,没有hive-site.xml
for { prop <- Seq("log4j.properties", "metrics.properties")
url <- Option(Utils.getContextOrSparkClassLoader.getResource(prop))
if url.getProtocol == "file" } {
val file = new File(url.getPath())
confStream.putNextEntry(new ZipEntry(file.getName()))
Files.copy(file, confStream)
confStream.closeEntry()
}
// Save the Hadoop config files under a separate directory in the archive. This directory
// is appended to the classpath so that the cluster-provided configuration takes precedence.
confStream.putNextEntry(new ZipEntry(s"$LOCALIZED_HADOOP_CONF_DIR/"))
confStream.closeEntry()
hadoopConfFiles.foreach { case (name, file) =>
if (file.canRead()) {
confStream.putNextEntry(new ZipEntry(s"$LOCALIZED_HADOOP_CONF_DIR/$name"))
Files.copy(file, confStream)
confStream.closeEntry()
}
}
// Save the YARN configuration into a separate file that will be overlayed on top of the
// cluster's Hadoop conf.
confStream.putNextEntry(new ZipEntry(SPARK_HADOOP_CONF_FILE))
yarnConf.writeXml(confStream)
confStream.closeEntry()
// Save Spark configuration to a file in the archive.
val props = new Properties()
sparkConf.getAll.foreach { case (k, v) => props.setProperty(k, v) }
// Override spark.yarn.key to point to the location in distributed cache which will be used
// by AM.
Option(amKeytabFileName).foreach { k => props.setProperty(KEYTAB.key, k) }
confStream.putNextEntry(new ZipEntry(SPARK_CONF_FILE))
val writer = new OutputStreamWriter(confStream, StandardCharsets.UTF_8)
props.store(writer, "Spark configuration.")
writer.flush()
confStream.closeEntry()
} finally {
confStream.close()
}
confArchive
}
目测是个bug
顺手提交个代码
https://github.com/apache/spark/pull/19663
继续解决问题
- –files path/to/your/hive-site.xml 放到了am container的工作目录,有效
- –jars path/to/your/hive-site.xml 当成jar包上传,有效
- cp path/to/your/hive-site.xml $HADOOP_CONF_DIR,看上面代码,有效
- –conf spark.yarn.dist.files=path/to/your/hive-site.xml 同1,有效
- –conf spark.yarn.dist.jars=path/to/your/hive-site.xml 同2,有效
测试版本在2.1.x下进行,其他版本自行验证,或者直接打上上面的patch