foreach
官方文档描述:
Applies a function f to all elements of this RDD.
函数原型:
def foreach(f: VoidFunction[T])
**
foreach用于遍历RDD,将函数f应用于每一个元素。
**
源码分析:
def foreach(f: T => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}
实例:
List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,3);
javaRDD.foreach(new VoidFunction<Integer>() {
@Override
public void call(Integer integer) throws Exception {
System.out.println(integer);
}
});
foreachPartition
官方文档描述:
Applies a function f to each partition of this RDD.
函数原型:
def foreachPartition(f: VoidFunction[java.util.Iterator[T]])
**
foreachPartition和foreach类似,只不过是对每一个分区使用f。
**
源码分析:
def foreachPartition(f: Iterator[T] => Unit): Unit = withScope {
val cleanF = sc.clean(f)
sc.runJob(this, (iter: Iterator[T]) => cleanF(iter))
}
实例:
List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data,3);
//获得分区ID
JavaRDD<String> partitionRDD = javaRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<Integer>, Iterator<String>>() {
@Override
public Iterator<String> call(Integer v1, Iterator<Integer> v2) throws Exception {
LinkedList<String> linkedList = new LinkedList<String>();
while(v2.hasNext()){
linkedList.add(v1 + "=" + v2.next());
}
return linkedList.iterator();
}
},false);
System.out.println(partitionRDD.collect());
javaRDD.foreachPartition(new VoidFunction<Iterator<Integer>>() {
@Override
public void call(Iterator<Integer> integerIterator) throws Exception {
System.out.println("___________begin_______________");
while(integerIterator.hasNext())
System.out.print(integerIterator.next() + " ");
System.out.println("\n___________end_________________");
}
});
lookup
官方文档描述:
Return the list of values in the RDD for key `key`. This operation is done efficiently
if the RDD has a known partitioner by only searching the partition that the key maps to.
函数原型:
def lookup(key: K): JList[V]
**
lookup用于(K,V)类型的RDD,指定K值,返回RDD中该K对应的所有V值。
**
源码分析:
def lookup(key: K): Seq[V] = self.withScope {
self.partitioner match {
case Some(p) =>
val index = p.getPartition(key)
val process = (it: Iterator[(K, V)]) => {
val buf = new ArrayBuffer[V]
for (pair <- it if pair._1 == key) {
buf += pair._2
}
buf
} : Seq[V]
val res = self.context.runJob(self, process, Array(index), false)
res(0)
case None =>
self.filter(_._1 == key).map(_._2).collect()
}
}
**
从源码中可以看出,如果partitioner不为空,计算key得到对应的partition,在从该partition中获得key对应的所有value;如果partitioner为空,则通过filter过滤掉其他不等于key的值,然后将其value输出。
**
实例:
List<Integer> data = Arrays.asList(5, 1, 1, 4, 4, 2, 2);
JavaRDD<Integer> javaRDD = javaSparkContext.parallelize(data, 3);
JavaPairRDD<Integer,Integer> javaPairRDD = javaRDD.mapToPair(new PairFunction<Integer, Integer, Integer>() {
int i = 0;
@Override
public Tuple2<Integer, Integer> call(Integer integer) throws Exception {
i++;
return new Tuple2<Integer, Integer>(integer,i + integer);
}
});
System.out.println(javaPairRDD.collect());
System.out.println("lookup------------" + javaPairRDD.lookup(4));