移位运算符
包括:
“>> 右移”;“<< 左移”;“>>> 无符号右移”
例子:
-5>>3=-1
1111 1111 1111 1111 1111 1111 1111 1011
1111 1111 1111 1111 1111 1111 1111 1111
其结果与 Math.floor((double)-5/(2*2*2)) 完全相同。
-5<<3=-40
1111 1111 1111 1111 1111 1111 1111 1011
1111 1111 1111 1111 1111 1111 1101 1000
其结果与 -5*2*2*2 完全相同。
5>>3=0
0000 0000 0000 0000 0000 0000 0000 0101
0000 0000 0000 0000 0000 0000 0000 0000
其结果与 5/(2*2*2) 完全相同。
5<<3=40
0000 0000 0000 0000 0000 0000 0000 0101
0000 0000 0000 0000 0000 0000 0010 1000
其结果与 5*2*2*2 完全相同。
-5>>>3=536870911
1111 1111 1111 1111 1111 1111 1111 1011
0001 1111 1111 1111 1111 1111 1111 1111
无论正数、负数,它们的右移、左移、无符号右移 32 位都是其本身,比如 -5<<32=-5、-5>>32=-5、-5>>>32=-5。
一个有趣的现象是,把 1 左移 31 位再右移 31 位,其结果为 -1。
0000 0000 0000 0000 0000 0000 0000 0001
1000 0000 0000 0000 0000 0000 0000 0000
1111 1111 1111 1111 1111 1111 1111 1111
位逻辑运算符
包括:
& 与;| 或;~ 非(也叫做求反);^ 异或
“& 与”、“| 或”、“~ 非”是基本逻辑运算,由此可以演变出“与非”、“或非”、“与或非”复合逻辑运算。“^ 异或”是一种特殊的逻辑运算,对它求反可以得到“同或”,所以“同或”逻辑也叫“异或非”逻辑。
例子:
5&3=1
0000 0000 0000 0000 0000 0000 0000 0101
0000 0000 0000 0000 0000 0000 0000 0011
0000 0000 0000 0000 0000 0000 0000 0001
-5&3=3
1111 1111 1111 1111 1111 1111 1111 1011
0000 0000 0000 0000 0000 0000 0000 0011
0000 0000 0000 0000 0000 0000 0000 0011
5|3=7
0000 0000 0000 0000 0000 0000 0000 0101
0000 0000 0000 0000 0000 0000 0000 0011
0000 0000 0000 0000 0000 0000 0000 0111
-5|3=-5
1111 1111 1111 1111 1111 1111 1111 1011
0000 0000 0000 0000 0000 0000 0000 0011
1111 1111 1111 1111 1111 1111 1111 1011
~5=-6
0000 0000 0000 0000 0000 0000 0000 0101
1111 1111 1111 1111 1111 1111 1111 1010
~-5=4
1111 1111 1111 1111 1111 1111 1111 1011
0000 0000 0000 0000 0000 0000 0000 0100
5^3=6
0000 0000 0000 0000 0000 0000 0000 0101
0000 0000 0000 0000 0000 0000 0000 0011
0000 0000 0000 0000 0000 0000 0000 0110
-5^3=-8
1111 1111 1111 1111 1111 1111 1111 1011
0000 0000 0000 0000 0000 0000 0000 0011
1111 1111 1111 1111 1111 1111 1111 1000
其他知识补充:
原码、反码(原码取反)、补码(反码+1)
再举一例,我们来看整数-1在计算机中如何表示。
假设这也是一个int类型,那么:
1、先取1的原码:00000000 00000000 00000000 00000001
2、得反码: 11111111 11111111 11111111 11111110
3、得补码: 11111111 11111111 11111111 11111111
可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF。