View的工作流程——layout&draw

ViewGroup的measure流程

上一篇View的工作流程——measure流程中了解到了View的measure与ViewGroup的measure流程有密不可分的联系,这次就把View的笔记做完。

ViewGroup作为容器除了完成自己的measure过程以外,还会遍历去调用所有子元素的measure方法,各个子元素再递归去执行这个过程。ViewGroup是一个抽象类没有重写onMeasure()方法,但是它提供了一个measureChildren方法。这个方法会遍历View去测量他们自身。

    protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec){
        final int size = mChildrenCount;
        final View[] children = mChildren;
        //对子元素遍历
        for (int i = 0; i < size; ++i) {
            final View child = children[i];
            if ((child.mViewFlags & VISIBILITY_MASK) != GONE) {
                measureChild(child, widthMeasureSpec, heightMeasureSpec);
            }
        }
    }

从上面的代码来看会对满足条件view调用measureChild方法,跟进去看看这个方法:

    protected void measureChild(View child, int parentWidthMeasureSpec,
            int parentHeightMeasureSpec) {
        //拿到子元素的LayoutParams
        final LayoutParams lp = child.getLayoutParams();
        //通过getChildMeasureSpec()创建MeasureSpec
        final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec,
                mPaddingLeft + mPaddingRight, lp.width);
        final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec,
                mPaddingTop + mPaddingBottom, lp.height);
        //将创建的MeasureSpec传递给子元素
        child.measure(childWidthMeasureSpec, childHeightMeasureSpec);
    }

从上面的代码可以看到首先会拿到子元素的LayoutParams,然后通过getChildMeasureSpec方法来创建子元素的MeasureSpec,这个方法在前一篇中有过介绍,这里就不多赘述了。最后会调用子元素的measure方法并将创建的MeasureSpec传递给子元素。在这里就不具体结合实现onMeasure()的ViewGroup的子类来分析了,留待以后对ViewGroup进行更详细的学习的时候再说。

layout过程

layout过程主要涉及了两个方法,layout()和onLayout()。layout方法为view和它所有的子元素分配尺寸和位置。layout是Android布局机制(layout mechanism)的第二阶段。在这个阶段,每个parent对他的所有子元素都要调用layout方法去设置他们的位置。子类(派生类)不应该复写这个方法,有子元素的子类应该复写onLayout()方法。在onLayout方法里他们应该调用他们子元素的layout方法。

以上是layout方法的注释,在很多时候源码的注释=api文档,所以推荐各位经常阅读api文档。毕竟别人解析的再好,也是别人的,不如自己去阅读一手的资料,看看写源码的人给我们的一些建议。

稍微歪了一下题,接下来看看layout方法的源码:

    public void layout(int l, int t, int r, int b) {
        if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) {
            onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec);
            mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT;
        }

        int oldL = mLeft;
        int oldT = mTop;
        int oldB = mBottom;
        int oldR = mRight;

        boolean changed = isLayoutModeOptical(mParent) ?
                setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b);

        if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) {
            onLayout(changed, l, t, r, b);
            mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED;

            ListenerInfo li = mListenerInfo;
            if (li != null && li.mOnLayoutChangeListeners != null) {
                ArrayList<OnLayoutChangeListener> listenersCopy =
                        (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone();
                int numListeners = listenersCopy.size();
                for (int i = 0; i < numListeners; ++i) {
                    listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB);
                }
            }
        }

        mPrivateFlags &= ~PFLAG_FORCE_LAYOUT;
        mPrivateFlags3 |= PFLAG3_IS_LAID_OUT;
    }

以上还是有很多代码理解不能,不过还好跟着书走一遍好了,代码中会通过判断layoutMode(大部分情况下都是返回false),最后通过setFrame方法来设置View四个顶点的位置。四个顶点一旦确定,那么View在父容器中的位置也就确定了。接着会调用onLayout方法,在ViewGroup里onLayout就是个抽象方法,找个实现的子类来看看,以下是LinearLayout的onLayout:

    protected void onLayout(boolean changed, int l, int t, int r, int b) {
        if (mOrientation == VERTICAL) {
            layoutVertical(l, t, r, b);
        } else {
            layoutHorizontal(l, t, r, b);
        }
    }

从字面上来看就是根据LinearLayout的orientation来执行相应的layout,看一下layoutVertical方法的代码:

    void layoutVertical(int left, int top, int right, int bottom) {
        final int paddingLeft = mPaddingLeft;

        int childTop;
        int childLeft;
        
        // Where right end of child should go
        final int width = right - left;
        int childRight = width - mPaddingRight;
        
        // Space available for child
        int childSpace = width - paddingLeft - mPaddingRight;
        
        final int count = getVirtualChildCount();

        final int majorGravity = mGravity & Gravity.VERTICAL_GRAVITY_MASK;
        final int minorGravity = mGravity & Gravity.RELATIVE_HORIZONTAL_GRAVITY_MASK;

        switch (majorGravity) {
           case Gravity.BOTTOM:
               // mTotalLength contains the padding already
               childTop = mPaddingTop + bottom - top - mTotalLength;
               break;

               // mTotalLength contains the padding already
           case Gravity.CENTER_VERTICAL:
               childTop = mPaddingTop + (bottom - top - mTotalLength) / 2;
               break;

           case Gravity.TOP:
           default:
               childTop = mPaddingTop;
               break;
        }

        for (int i = 0; i < count; i++) {
            final View child = getVirtualChildAt(i);
            if (child == null) {
                childTop += measureNullChild(i);
            } else if (child.getVisibility() != GONE) {
                final int childWidth = child.getMeasuredWidth();
                final int childHeight = child.getMeasuredHeight();
                
                final LinearLayout.LayoutParams lp =
                        (LinearLayout.LayoutParams) child.getLayoutParams();
                
                int gravity = lp.gravity;
                if (gravity < 0) {
                    gravity = minorGravity;
                }
                final int layoutDirection = getLayoutDirection();
                final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection);
                switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) {
                    case Gravity.CENTER_HORIZONTAL:
                        childLeft = paddingLeft + ((childSpace - childWidth) / 2)
                                + lp.leftMargin - lp.rightMargin;
                        break;

                    case Gravity.RIGHT:
                        childLeft = childRight - childWidth - lp.rightMargin;
                        break;

                    case Gravity.LEFT:
                    default:
                        childLeft = paddingLeft + lp.leftMargin;
                        break;
                }

                if (hasDividerBeforeChildAt(i)) {
                    childTop += mDividerHeight;
                }

                childTop += lp.topMargin;
                setChildFrame(child, childLeft, childTop + getLocationOffset(child),
                        childWidth, childHeight);
                childTop += childHeight + lp.bottomMargin + getNextLocationOffset(child);

                i += getChildrenSkipCount(child, i);
            }
        }
    }

在遍历子元素之前会先初始化childTop,接着遍历子元素,在处理之后会调用setChildFrame方法来为子元素指定对应的位置,而clipTop的值会不断的增大,这意味着之后的元素会被放到靠下的位置,这和vetical的LinearLayout符合。setChildFrame()中会调用子元素的layout,之前分析过layout方法会为自身和自身的子元素确定位置和尺寸信息。如果这个child也有子元素,那么就会递归调用onLayout而子元素的子元素又会调用layout方法……子子孙孙无穷尽了。玩笑,递归肯定有出口的,那就是最里层的元素。如此处理之后,整个View树就完成了layout过程。

draw

简单的来说draw就是将view绘制到屏幕上。在调用这个方法之前必须完成onlayout的过程。在自定义view的时候实现onDraw而不是重写draw。

    public void draw(Canvas canvas) {
        final int privateFlags = mPrivateFlags;
        final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE &&
                (mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState);
        mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN;

        /*
         * Draw traversal performs several drawing steps which must be executed
         * in the appropriate order:
         *
         *      1. Draw the background
         *      2. If necessary, save the canvas' layers to prepare for fading
         *      3. Draw view's content
         *      4. Draw children
         *      5. If necessary, draw the fading edges and restore layers
         *      6. Draw decorations (scrollbars for instance)
         */

        // Step 1, draw the background, if needed
        int saveCount;

        if (!dirtyOpaque) {
            drawBackground(canvas);
        }

        // skip step 2 & 5 if possible (common case)
        final int viewFlags = mViewFlags;
        boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0;
        boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0;
        if (!verticalEdges && !horizontalEdges) {
            // Step 3, draw the content
            if (!dirtyOpaque) onDraw(canvas);

            // Step 4, draw the children
            dispatchDraw(canvas);

            // Overlay is part of the content and draws beneath Foreground
            if (mOverlay != null && !mOverlay.isEmpty()) {
                mOverlay.getOverlayView().dispatchDraw(canvas);
            }

            // Step 6, draw decorations (foreground, scrollbars)
            onDrawForeground(canvas);

            // we're done...
            return;
        }

这个源码的注释还真是详细……主要的流程都已经在源码中标注了出来这里就不做过多的解释了。

  • 画背景
  • 有必要的话保存画布层级
  • 画view的内容
  • 画子元素
  • 有必要的话画边缘恢复层级
  • 画装饰

到这View的工作流程暂时就过了一遍了,终于为自定义View扫清了一个障碍,不过自定义View还需要更多的练习,光知道原理是没什么用的,还要回用合适的工具、方法来构建出自己想要的东西。

点赞