Java中23种设计模式--超快速入门及举例代码

在网上看了一些设计模式的文章后,感觉还是印象不太深刻,决定好好记录记录。

原文地址:http://blog.csdn.net/doymm2008/article/details/13288067  

 

注:本文代码基本都有很多没有初始化等等问题,主要是为了减少代码量,达到一眼就能了解大概情况的目的。

 

java的设计模式大体上分为三大类:

  • 创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
  • 结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
  • 行为型模式(11种):策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

设计模式遵循的原则有6个:

1、开闭原则(Open Close Principle)

  对扩展开放,对修改关闭

2、里氏代换原则(Liskov Substitution Principle)

  只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。

3、依赖倒转原则(Dependence Inversion Principle)

  这个是开闭原则的基础,对接口编程,依赖于抽象而不依赖于具体。

4、接口隔离原则(Interface Segregation Principle)

  使用多个隔离的借口来降低耦合度。

5、迪米特法则(最少知道原则)(Demeter Principle)

  一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

6、合成复用原则(Composite Reuse Principle)

  原则是尽量使用合成/聚合的方式,而不是使用继承。继承实际上破坏了类的封装性,超类的方法可能会被子类修改。

1. 工厂模式(Factory Method)

  常用的工厂模式是静态工厂,利用static方法,作为一种类似于常见的工具类Utils等辅助效果,一般情况下工厂类不需要实例化。

  

interface food{}

class A implements food{}
class B implements food{}
class C implements food{}
public class StaticFactory {
private StaticFactory(){} public static food getA(){ return new A(); } public static food getB(){ return new B(); } public static food getC(){ return new C(); } } class Client{ //客户端代码只需要将相应的参数传入即可得到对象 //用户不需要了解工厂类内部的逻辑。 public void get(String name){ food x = null ; if ( name.equals("A")) { x = StaticFactory.getA(); }else if ( name.equals("B")){ x = StaticFactory.getB(); }else { x = StaticFactory.getC(); } } }

2. 抽象工厂模式(Abstract Factory)

  一个基础接口定义了功能,每个实现接口的子类就是产品,然后定义一个工厂接口,实现了工厂接口的就是工厂,这时候,接口编程的优点就出现了,我们可以新增产品类(只需要实现产品接口),只需要同时新增一个工厂类,客户端就可以轻松调用新产品的代码。

  抽象工厂的灵活性就体现在这里,无需改动原有的代码,毕竟对于客户端来说,静态工厂模式在不改动StaticFactory类的代码时无法新增产品,如果采用了抽象工厂模式,就可以轻松的新增拓展类。

  实例代码:

interface food{}

class A implements food{}
class B implements food{}

interface produce{ food get();}

class FactoryForA implements produce{
    @Override
    public food get() {
        return new A();
    }
}
class FactoryForB implements produce{
    @Override
    public food get() {
        return new B();
    }
}
public class AbstractFactory {
    public void ClientCode(String name){
        food x= new FactoryForA().get();
        x = new FactoryForB().get();
    }
}

3. 单例模式(Singleton)

   在内部创建一个实例,构造器全部设置为private,所有方法均在该实例上改动,在创建上要注意类的实例化只能执行一次,可以采用许多种方法来实现,如Synchronized关键字,或者利用内部类等机制来实现。

  

public class Singleton {
    private Singleton(){}

    private static class SingletonBuild{
        private static Singleton value = new Singleton();
    }

    public Singleton getInstance(){  return  SingletonBuild.value ;}
    
}

4.建造者模式(Builder)

  在了解之前,先假设有一个问题,我们需要创建一个学生对象,属性有name,number,class,sex,age,school等属性,如果每一个属性都可以为空,也就是说我们可以只用一个name,也可以用一个school,name,或者一个class,number,或者其他任意的赋值来创建一个学生对象,这时该怎么构造?

  难道我们写6个1个输入的构造函数,15个2个输入的构造函数…….吗?这个时候就需要用到Builder模式了。给个例子,大家肯定一看就懂:

 

public class Builder {

    static class Student{
        String name = null ;
        int number = -1 ;
        String sex = null ;
        int age = -1 ;
        String school = null ;
     //构建器,利用构建器作为参数来构建Student对象
static class StudentBuilder{ String name = null ; int number = -1 ; String sex = null ; int age = -1 ; String school = null ; public StudentBuilder setName(String name) { this.name = name; return this ; } public StudentBuilder setNumber(int number) { this.number = number; return this ; } public StudentBuilder setSex(String sex) { this.sex = sex; return this ; } public StudentBuilder setAge(int age) { this.age = age; return this ; } public StudentBuilder setSchool(String school) { this.school = school; return this ; } public Student build() { return new Student(this); } } public Student(StudentBuilder builder){ this.age = builder.age; this.name = builder.name; this.number = builder.number; this.school = builder.school ; this.sex = builder.sex ; } } public static void main( String[] args ){ Student a = new Student.StudentBuilder().setAge(13).setName("LiHua").build(); Student b = new Student.StudentBuilder().setSchool("sc").setSex("Male").setName("ZhangSan").build(); } }

5. 原型模式(Protype)

原型模式就是讲一个对象作为原型,使用clone()方法来创建新的实例。

public class Prototype implements Cloneable{

    private String name;

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    @Override
    protected Object clone()   {
        try {
            return super.clone();
        } catch (CloneNotSupportedException e) {
            e.printStackTrace();
        }finally {
            return null;
        }
    }

    public static void main ( String[] args){
        Prototype pro = new Prototype();
        Prototype pro1 = (Prototype)pro.clone();
    }
}

此处使用的是浅拷贝,关于深浅拷贝,大家可以另行查找相关资料。

6.适配器模式(Adapter)

适配器模式的作用就是在原来的类上提供新功能。主要可分为3种:

  • 类适配:创建新类,继承源类,并实现新接口,例如 
    class  adapter extends oldClass  implements newFunc{}
  • 对象适配:创建新类持源类的实例,并实现新接口,例如 
    class adapter implements newFunc { private oldClass oldInstance ;}
  • 接口适配:创建新的抽象类实现旧接口方法。例如 
    abstract class adapter implements oldClassFunc { void newFunc();}

7.装饰模式(Decorator)

 给一类对象增加新的功能,装饰方法与具体的内部逻辑无关。例如:

interface Source{ void method();}
public class Decorator implements Source{

    private Source source ;
    public void decotate1(){
        System.out.println("decorate");
    }
    @Override
    public void method() {
        decotate1();
        source.method();
    }
}

8.代理模式(Proxy)

客户端通过代理类访问,代理类实现具体的实现细节,客户只需要使用代理类即可实现操作。

这种模式可以对旧功能进行代理,用一个代理类调用原有的方法,且对产生的结果进行控制。

interface Source{ void method();}

class OldClass implements Source{
    @Override
    public void method() {
    }
}

class Proxy implements Source{
    private Source source = new OldClass();

    void doSomething(){}
    @Override
    public void method() {
        new Class1().Func1();
        source.method();
        new Class2().Func2();
        doSomething();
    }
}

9.外观模式(Facade)

为子系统中的一组接口提供一个一致的界面,定义一个高层接口,这个接口使得这一子系统更加容易使用。这句话是百度百科的解释,有点难懂,但是没事,看下面的例子,我们在启动停止所有子系统的时候,为它们设计一个外观类,这样就可以实现统一的接口,这样即使有新增的子系统subSystem4,也可以在不修改客户端代码的情况下轻松完成。

public class Facade {
    private subSystem1 subSystem1 = new subSystem1();
    private subSystem2 subSystem2 = new subSystem2();
    private subSystem3 subSystem3 = new subSystem3();
    
    public void startSystem(){
        subSystem1.start();
        subSystem2.start();
        subSystem3.start();
    }
    
    public void stopSystem(){
        subSystem1.stop();
        subSystem2.stop();
        subSystem3.stop();
    }
}

10.桥接模式(Bridge)

这里引用下http://www.runoob.com/design-pattern/bridge-pattern.html的例子。Circle类将DrwaApi与Shape类进行了桥接,代码:

interface DrawAPI {
    public void drawCircle(int radius, int x, int y);
}
class RedCircle implements DrawAPI {
    @Override
    public void drawCircle(int radius, int x, int y) {
        System.out.println("Drawing Circle[ color: red, radius: "
                + radius +", x: " +x+", "+ y +"]");
    }
}
class GreenCircle implements DrawAPI {
    @Override
    public void drawCircle(int radius, int x, int y) {
        System.out.println("Drawing Circle[ color: green, radius: "
                + radius +", x: " +x+", "+ y +"]");
    }
}

abstract class Shape {
    protected DrawAPI drawAPI;
    protected Shape(DrawAPI drawAPI){
        this.drawAPI = drawAPI;
    }
    public abstract void draw();
}

class Circle extends Shape {
    private int x, y, radius;

    public Circle(int x, int y, int radius, DrawAPI drawAPI) {
        super(drawAPI);
        this.x = x;
        this.y = y;
        this.radius = radius;
    }

    public void draw() {
        drawAPI.drawCircle(radius,x,y);
    }
}

//客户端使用代码
Shape redCircle = new Circle(100,100, 10, new RedCircle());
Shape greenCircle = new Circle(100,100, 10, new GreenCircle());
redCircle.draw();
greenCircle.draw();

11.组合模式(Composite)

 组合模式是为了表示那些层次结构,同时部分和整体也可能是一样的结构,常见的如文件夹或者树。举例:

abstract class component{}

class File extends  component{ String filename;}

class Folder extends  component{
    component[] files ;  //既可以放文件File类,也可以放文件夹Folder类。Folder类下又有子文件或子文件夹。
    String foldername ;
    public Folder(component[] source){ files = source ;}
    
    public void scan(){
        for ( component f:files){
            if ( f instanceof File){
                System.out.println("File "+((File) f).filename);
            }else if(f instanceof Folder){
                Folder e = (Folder)f ;
                System.out.println("Folder "+e.foldername);
                e.scan();
            }
        }
    }
    
}

12.享元模式(Flyweight)

使用共享对象的方法,用来尽可能减少内存使用量以及分享资讯。通常使用工厂类辅助,例子中使用一个HashMap类进行辅助判断,数据池中是否已经有了目标实例,如果有,则直接返回,不需要多次创建重复实例。

abstract class flywei{ }

public class Flyweight extends flywei{
    Object obj ;
    public Flyweight(Object obj){
        this.obj = obj;
    }
}

class  FlyweightFactory{
    private HashMap<Object,Flyweight> data;

    public FlyweightFactory(){ data = new HashMap<>();}

    public Flyweight getFlyweight(Object object){
        if ( data.containsKey(object)){
            return data.get(object);
        }else {
            Flyweight flyweight = new Flyweight(object);
            data.put(object,flyweight);
            return flyweight;
        }
    }
}

 

    原文作者:ma_lihe
    原文地址: https://www.cnblogs.com/malihe/p/6891920.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞