python入门系列:多进程

多进程和多线程的区别

Python多线程的操作,由于有GIL锁的存在,使得其运行效率并不会很高,无法充分利用 多核cpu 的优势,只有在I/O密集形的任务逻辑中才能实现并发。

使用多进程来编写同样消耗cpu(一般是计算)的逻辑,对于 多核cpu 来说效率会好很多。

操作系统对进程的调度代价要比线程调度要大的多。

多线程和多进程使用案例对比

1.用多进程多线程两种方式来运算 斐波那契数列,这里都依赖 concurrent.futures 模块提供的线/进程池。

import time

from concurrent.futures import ThreadPoolExecutor

from concurrent.futures import ProcessPoolExecutor

from concurrent.futures import as_completed

def fib(n):

return 1 if n <= 2 else fib(n-1) + fib(n-2)

if __name__ == ‘__main__’:

# with ProcessPoolExecutor(3) as executor:

with ThreadPoolExecutor(3) as executor:

all_task = [executor.submit(fib, n) for n in range(25, 35)]

start_time = time.time()

for future in as_completed(all_task):

data = future.result()

# todo

end_time = time.time()

print(“time consuming by threads: {0}s”.format(end_time-start_time))

# print(“time consuming by processes: {0}s”.format(end_time-start_time))

两种方式的运行结果对比:

# result:

# time consuming by threads: 4.823292016983032s

# time consuming by processes: 3.3890748023986816s

可以看到,对于高计算量的任务,多进程要比多线程更加高效。同时,从这个例子中还能看出,通过concurrent.futures模块使用线程池进程池的方式的接口和使用逻辑是一样的,不过在使用多进程时,对于Windows的操作平台,相关逻辑一定要放在main中,Linux不受约束。

2.用多进程多线程两种方式来模拟 I/O密集操作,I/O操作 的特点就是 cpu 要耗费大量的时间进行等待数据,这里用sleep()进行模拟即可。

整体的操作方式不变,修改过的逻辑如下:

def random_sleep(n):

time.sleep(n)

return n

# 8 个线程,每个休眠两秒,模拟 I/O

with ProcessPoolExecutor(8) as executor:

# with ThreadPoolExecutor(8) as executor:

all_task = [executor.submit(random_sleep, 2) for i in range(30)]

# result:

# time consuming by threads: 8.002903699874878s

# time consuming by processes: 8.34946894645691s

多进程编程

直接使用

import time

import multiprocessing

def read(times):

time.sleep(times)

print(“process reading…”)

return “read for {0}s”.format(times)

def write(times):

time.sleep(times)

print(“process writing…”)

return “write for {0}s”.format(times)

if __name__ == ‘__main__’:

read_process = multiprocessing.Process(target=read, args=(1,))

write_process = multiprocessing.Process(target=write, args=(2,))

read_process.start()

write_process.start()

print(“read_process id {rid}”.format(rid=read_process.pid))

print(“write_process id {wid}”.format(wid=write_process.pid))

read_process.join()

write_process.join()

print(“done”)

# result:

# read_process id 7064

# write_process id 836

# process reading…

# process writing…

# done

可以看出,关于多线程的逻辑和多线程的使用方式以类似的,要注意在Windows操作系统上,和进程有关的逻辑要写在if __name__ == ‘__main__’中。其他的一些方法请参阅 官方文档。

使用原生进程池

import time

import multiprocessing

def read(times):

time.sleep(times)

print(“process reading…”)

return “read for {0}s”.format(times)

def write(times):

time.sleep(times)

print(“process writing…”)

return “write for {0}s”.format(times)

if __name__ == ‘__main__’:

# multiprocessing.cpu_count() 获取cpu的核心数

pool = multiprocessing.Pool(multiprocessing.cpu_count())

read_result = pool.apply_async(read, args=(2,))

write_result = pool.apply_async(write, args=(3,))

# 关闭进程池,不再接受新的任务提交,否则 join() 出错

pool.close()

# 等待进程池中提交的所有任务完成

pool.join()

print(read_result.get())

print(write_result.get())

# result:

# process reading…

# process writing…

# read for 2s

# write for 3s

使用imap(),所有任务顺序执行:

pool = multiprocessing.Pool(multiprocessing.cpu_count())

for result in pool.imap(read, [2, 1, 3]):

print(result)

# result:

# process reading…

# process reading…

# read for 2s

# read for 1s

# process reading…

# read for 3s

使用imap_unordered(),哪个任务先完成就先返回结果:

for result in pool.imap_unordered(read, [1, 5, 3]):

print(result)

# process reading…

# read for 1s

# process reading…

# read for 3s

# process reading…

# read for 5s

使用concurrent.futures中的ProcessPoolExecutor

这个在多线程和多进程对比的时提到过,因为和多线程的使用方式一样,这里就不多赘述,可以参阅 官方文档 给出的例子

进程间通信

进程通信和线程通信有些区别,在线程通信中各种提供的锁的机制全局变量在这里不再适用,我们要选取新的工具来完成进程通信任务。

使用multiprocessing.Queue

使用逻辑是和多线程中的Queue是一样的,详细方法。这种通信方式不能用在通过Pool进程池创建的进程

import multiprocessing

import time

def plus(queue):

for i in range(6):

num = queue.get() + 1

queue.put(num)

print(num)

time.sleep(1)

def subtract(queue):

for i in range(6):

num = queue.get() – 1

queue.put(num)

print(num)

time.sleep(2)

if __name__ == ‘__main__’:

queue = multiprocessing.Queue(1)

queue.put(0)

plus_process = multiprocessing.Process(target=plus, args=(queue,))

subtract_process = multiprocessing.Process(target=subtract, args=(queue,))

plus_process.start()

subtract_process.start()

# result:

# 1

# 1

# 2

# 2

# 3

# 3

# 0

# 1

# 2

# 2

# 1

# 0

使用Manager()中的Queue

Manager()会返回一个在进程间进行同步管理的一个对象,它提供了多种在进程间共享数据的形式。

import multiprocessing

import time

def plus(queue):

for i in range(6):

num = queue.get() + 1

queue.put(num)

print(num)

time.sleep(1)

def subtract(queue):

for i in range(6):

num = queue.get() – 1

queue.put(num)

print(num)

time.sleep(2)

if __name__ == ‘__main__’:

queue = multiprocessing.Manager().Queue(1) # 创建方式有些奇特

# queue = multiprocessing.Queue() # 这时用这个就行不通了

pool = multiprocessing.Pool(2)

queue.put(0)

pool.apply_async(plus, args=(queue,))

pool.apply_async(subtract, args=(queue,))

pool.close()

pool.join()

# result:

# 0

# 1

# 1

# 2

# 2

# 3

# -1

# 0

# 1

# 2

# 1

# 0

使用Manager()中的list()

多个进程可以共享全局的list,因为是进程间共享,所以用锁的机制保证它的安全性。这里的Manager().Lock不是前面线程级别的Lock,它可以保证进程间的同步。

import multiprocessing as mp

import time

def add_person(waiting_list, name_list, lock):

lock.acquire()

for name in name_list:

waiting_list.append(name)

time.sleep(1)

print(waiting_list)

lock.release()

def get_person(waiting_list, lock):

lock.acquire()

if waiting_list:

name = waiting_list.pop(0)

print(“get {0}”.format(name))

lock.release()

if __name__ == ‘__main__’:

waiting_list = mp.Manager().list()

lock = mp.Manager().Lock() # 使用 lock 限制进程对全局量的访问

name_list = [“MetaTian”, “Rity”, “Anonymous”]

add_process = mp.Process(target=add_person, args=(waiting_list, name_list, lock))

get_process = mp.Process(target=get_person, args=(waiting_list, lock))

add_process.start()

get_process.start()

add_process.join()

get_process.join()

print(waiting_list)

# result:

# [‘MetaTian’]

# [‘MetaTian’, ‘Rity’]

# [‘MetaTian’, ‘Rity’, ‘Anonymous’]

# get MetaTian

# [‘Rity’, ‘Anonymous’]

Manager()中还有更多的进程间通信的工具,可以参阅官方文档。

使用Pipe

Pipe只能适用于两个进程间的通信,它的性能高于Queue,Pipe()会返回两个Connection对象,使用这个对象可以在进程间进行数据的发送和接收,非常像前面讲过的socket对象。关于Connection

import multiprocessing

def plus(conn):

default_num = 0

for i in range(3):

num = 0 if i == 0 else conn.recv()

conn.send(num + 1)

print(“plus send: {0}”.format(num+1))

def subtract(conn):

for i in range(3):

num = conn.recv()

conn.send(num-1)

print(“subtract send: {0}”.format(num-1))

if __name__ == ‘__main__’:

conn_plus, conn_sbtract = multiprocessing.Pipe()

plus_process = multiprocessing.Process(target=plus, args=(conn_plus,))

subtract_process = multiprocessing.Process(target=subtract, args=(conn_sbtract,))

plus_process.start()

subtract_process.start()

# result:

# plus send: 1

# subtract send: 0

# plus send: 1

# subtract send: 0

# plus send: 1

# subtract send: 0

send()可以连续发送数据,recv()将另一端发送的数据陆续取出,如果没有取到数据,则进入等待状态。

注:喜欢python + qun:839383765 可以获取Python各类免费最新入门学习资料!

    原文作者:Java丶python攻城狮
    原文地址: https://www.jianshu.com/p/00e2b18dd953
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞