Go HTTP 框架性能大幅下降原因分析

    最近在开发一个web 框架,然后业务方使用过程中,跟我们说,压测qps 上不去,我就很纳闷,httprouter + net/http.httpserver , 性能不可能这么差啊,网上的压测结果都是10w qps 以上,几个middleware 至于将性能拖垮?后来一番排查,发现些有意思的东西。

    首先,我就简单压测hello world, 每个请求进来,我日志都不打,然后,打开pprof ,显示的情况如下:

《Go HTTP 框架性能大幅下降原因分析》

    这里futex 怎么这么高?看着上面的一些操作,addtimer, deltimer 我想到以前的自己实现的定时器,这估计是超时引起的。然后检查版本,go1.9,  然后框架默认为每个conn 设置了4个timeout,readtimeout, writetimeout, idletimeout, headertimeout ,这直接导致了定时器在添加和删除回调的时候,锁的压力特别大。

    下面我们分析下,正常的加超时操作,到底发生了些什么,下面是个最简单的例子,为了安全,每个连接设置超时。

package main

import (
	"fmt"
	"github.com/julienschmidt/httprouter"
	"log"
	"net/http"
	"time"
)

func Index(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {
	fmt.Fprint(w, "Welcome!\n")
}

func Hello(w http.ResponseWriter, r *http.Request, ps httprouter.Params) {
	fmt.Fprintf(w, "hello, %s!\n", ps.ByName("name"))
}

func main() {

	router := httprouter.New()
	router.GET("/", Index)
	router.GET("/hello/:name", Hello)

	srv := &http.Server{
		ReadTimeout:       5 * time.Second,
		WriteTimeout:      10 * time.Second,
		ReadHeaderTimeout: 10 * time.Second,
		IdleTimeout:       10 * time.Second,
		Addr:              "0.0.0.0:8998",
		Handler:           router,
	}

	log.Fatal(srv.ListenAndServe())
}

    其中,ListenAndServe() 在调用accept 每个连接后,会调用 server.serve(), 根据是否添加超时,调用conn.SetReadDeadline等函数,对应的是 net/http/server.go,如下:

// Serve a new connection.
func (c *conn) serve(ctx context.Context) {
	...

	if tlsConn, ok := c.rwc.(*tls.Conn); ok {
		if d := c.server.ReadTimeout; d != 0 {
			c.rwc.SetReadDeadline(time.Now().Add(d)) // 设置读超时
		}
		if d := c.server.WriteTimeout; d != 0 {
			c.rwc.SetWriteDeadline(time.Now().Add(d))// 设置写超时
		}
		if err := tlsConn.Handshake(); err != nil {
			c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
			return
		}
		c.tlsState = new(tls.ConnectionState)
		*c.tlsState = tlsConn.ConnectionState()
		if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
			if fn := c.server.TLSNextProto[proto]; fn != nil {
				h := initNPNRequest{tlsConn, serverHandler{c.server}}
				fn(c.server, tlsConn, h)
			}
			return
		}
	}
   ...

    之后,con.SetReadDeadline 会调用 internal/poll/fd_poll_runtime.go的 fd.setReadDeadline,最后调用runtime/netpoll.go 的poll_runtime_pollSetDeadline, 这个函数会链接成internal/poll.runtime_pollSetDeadline。这个函数比较关键:

//go:linkname poll_runtime_pollSetDeadline internal/poll.runtime_pollSetDeadline
func poll_runtime_pollSetDeadline(pd *pollDesc, d int64, mode int) {
	lock(&pd.lock)
	if pd.closing {
		unlock(&pd.lock)
		return
	}
	pd.seq++ // invalidate current timers
	// Reset current timers.
	if pd.rt.f != nil {
		deltimer(&pd.rt)
		pd.rt.f = nil
	}
	if pd.wt.f != nil {
		deltimer(&pd.wt)
		pd.wt.f = nil
	}
	// Setup new timers.
	if d != 0 && d <= nanotime() {
		d = -1
	}
	if mode == 'r' || mode == 'r'+'w' {
		pd.rd = d
	}
	if mode == 'w' || mode == 'r'+'w' {
		pd.wd = d
	}
	if pd.rd > 0 && pd.rd == pd.wd {
		pd.rt.f = netpollDeadline
		pd.rt.when = pd.rd
		// Copy current seq into the timer arg.
		// Timer func will check the seq against current descriptor seq,
		// if they differ the descriptor was reused or timers were reset.
		pd.rt.arg = pd
		pd.rt.seq = pd.seq
		addtimer(&pd.rt)
	} else {
		if pd.rd > 0 {
			pd.rt.f = netpollReadDeadline // 设置读的定时回调
			pd.rt.when = pd.rd
			pd.rt.arg = pd
			pd.rt.seq = pd.seq
			addtimer(&pd.rt)             // 添加到系统定时器中
		}
		if pd.wd > 0 {
			pd.wt.f = netpollWriteDeadline // 设置写的定时回调
			pd.wt.when = pd.wd
			pd.wt.arg = pd
			pd.wt.seq = pd.seq
			addtimer(&pd.wt)             // 添加到系统定时器中
		}
	}
	// If we set the new deadline in the past, unblock currently pending IO if any.
	var rg, wg *g
	atomicstorep(unsafe.Pointer(&wg), nil) // full memory barrier between stores to rd/wd and load of rg/wg in netpollunblock
	if pd.rd < 0 {
		rg = netpollunblock(pd, 'r', false)
	}
	if pd.wd < 0 {
		wg = netpollunblock(pd, 'w', false)
	}
	unlock(&pd.lock)
	if rg != nil {
		netpollgoready(rg, 3)
	}
	if wg != nil {
		netpollgoready(wg, 3)
	}
}

    这里主要工作就是检查过期定时器,然后添加定时器,设置回调函数为netpollReadDeadline 或者netpollWriteDeadline。 从中可以看出添加和删除定时器操作为addtimer(&pd.rt), deltimer(&pd.rt)。

    后面就是核心了,为啥加超时后这么慢,看下addtimer 的实现,timer 是个四叉小顶堆,每次添加一个超时,最后都需要对一个全局的timers 进行加锁,当qps 很高,一个请求,多次加锁,这性能能很高吗?

type timer struct {
	i int // heap index

	// Timer wakes up at when, and then at when+period, ... (period > 0 only)
	// each time calling f(arg, now) in the timer goroutine, so f must be
	// a well-behaved function and not block.
	when   int64
	period int64
	f      func(interface{}, uintptr)
	arg    interface{}
	seq    uintptr
}

var timers struct {
	lock         mutex
	gp           *g
	created      bool
	sleeping     bool
	rescheduling bool
	sleepUntil   int64
	waitnote     note
	t            []*timer
}

//添加一个定时器

func addtimer(t *timer) {
	lock(&timers.lock)
	addtimerLocked(t)
	unlock(&timers.lock)
}

    解决锁冲突改怎么办?分段锁是很常见一个思路,在go1.10 后,timers 由一个,变成64个,定时器被打散到64个锁上去,自然锁冲突就降低了。看1.10的runtime/time.go 可以发现定义如下,每个p有单独的timer, 每个timer能被多个p使用:

// Package time knows the layout of this structure.
// If this struct changes, adjust ../time/sleep.go:/runtimeTimer.
// For GOOS=nacl, package syscall knows the layout of this structure.
// If this struct changes, adjust ../syscall/net_nacl.go:/runtimeTimer.
type timer struct {
	tb *timersBucket // the bucket the timer lives in
	i  int           // heap index

	// Timer wakes up at when, and then at when+period, ... (period > 0 only)
	// each time calling f(arg, now) in the timer goroutine, so f must be
	// a well-behaved function and not block.
	when   int64
	period int64
	f      func(interface{}, uintptr)
	arg    interface{}
	seq    uintptr
}

// timersLen is the length of timers array.
//
// Ideally, this would be set to GOMAXPROCS, but that would require
// dynamic reallocation
//
// The current value is a compromise between memory usage and performance
// that should cover the majority of GOMAXPROCS values used in the wild.
const timersLen = 64 //64个bucket

// timers contains "per-P" timer heaps.
//
// Timers are queued into timersBucket associated with the current P,
// so each P may work with its own timers independently of other P instances.
//
// Each timersBucket may be associated with multiple P
// if GOMAXPROCS > timersLen.
var timers [timersLen]struct {
	timersBucket

	// The padding should eliminate false sharing
	// between timersBucket values.
	pad [sys.CacheLineSize - unsafe.Sizeof(timersBucket{})%sys.CacheLineSize]byte
}

下面是go1.10 后的timer 数据结构(此图来源于网络):

《Go HTTP 框架性能大幅下降原因分析》 

    总结,网上很多httpserver 框架压测 qps 很高,但是它们的demo并没有设置超时,数据真实值会差很多。线上如果需要设置超时,需要注意go 的版本,qps 很高的情况下,最好使用1.10以上。最终我们不做任何其他操作情况下,仅将go 版本提高到1.10,qps 提高接近2倍。

    原文作者:HTTP
    原文地址: https://juejin.im/entry/5bc9958df265da0ace2168b6
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞