人像美妆是近几年来深受广大女孩儿群体喜欢的修图功能之一,目前市面中做的比较好的有美妆相机、玩美彩妆、天天P图等APP,当然还有一些PC专用的秀图软件,本文将给大家做个算法初识;
什么是人像美妆?通俗的看个样例图:
这个图中,由左边的原图,到右边的化妆效果图,就叫做人像美妆。
本人对AI美妆的一些看法如下:
1.妆容自然,逼真;
2.鲁棒性高,不受五官遮挡影响;
3.速度越快越好;
4.完全智能化,可以针对不同人像照片智能匹配最优妆容;
目前传统美妆的优缺点:
优点:
1.妆容种类丰富,可自由搭配,用户自主选择;
美妆相机和玩美彩妆两款App均提供了数十种不同的妆容效果,供用户自由选择;
2.上妆速度快,可以实时处理;
玩美彩妆、美妆相机、天天P图、无他相机、FaceU等APP均已支持实时上妆效果;
缺点:
1.妆容鲁棒性不高,被光线,五官遮挡影响较大;
2.逼真度不高;
3.无法完全智能化;
目前市面基于传统算法的美妆类APP均无法达到上述3点;
传统人像美妆算法流程:
1.妆容模版制作(Photoshop等编辑软件制作,由设计完成)
2.人脸检测,特征点识别;
这一步骤主要通过人脸检测+人脸对齐来获得N个特征点,目前开源的有Dlib,OpenCV等,商用版有商汤科技、旷世科技、虹软科技等,以及腾讯、美图等;
这里给出一个开源的人脸检测+对齐(68点位)的资源链接:github.com/XiuSdk/cnn-…
3.基于人脸特征点,将模版变形,对齐到人脸五官区域;
变形算法有很多,仿射变换,IDW变换,MLS变换,RMLS变换等;
相关代码连接:
MLS(MLS代码在博客内容中)
如果大家懒得看博客,这里给出MLS变形代码:
- static void setSrcPoints(const vector<PointD> &qsrc, vector<PointD> &newDotL, int* nPoint) {
- *nPoint = qsrc.size();
- newDotL.clear();
- newDotL.reserve(*nPoint);
- for (size_t i = 0; i < qsrc.size(); i++)
- newDotL.push_back(qsrc[i]);
- }
-
- static void setDstPoints(const vector<PointD> &qdst,vector<PointD> &oldDotL, int* nPoint) {
- *nPoint = qdst.size();
- oldDotL.clear();
- oldDotL.reserve(*nPoint);
-
- for (size_t i = 0; i < qdst.size(); i++) oldDotL.push_back(qdst[i]);
- }
- static double bilinear_interp(double x, double y, double v11, double v12,
- double v21, double v22) {
- return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 * (1 - y) + v22 * y) * x;
- }
-
- static double calcArea(const vector<PointD> &V) {
- PointD lt, rb;
- lt.x = lt.y = 1e10;
- rb.x = rb.y = -1e10;
- for (vector<PointD >::const_iterator i = V.begin(); i != V.end();
- i++) {
- if (i->x < lt.x) lt.x = i->x;
- if (i->x > rb.x) rb.x = i->x;
- if (i->y < lt.y) lt.y = i->y;
- if (i->y > rb.y) rb.y = i->y;
- }
- return (rb.x - lt.x) * (rb.y - lt.y);
- }
- static void calcDelta_rigid(int srcW, int srcH, int tarW, int tarH, double alpha, int gridSize, int nPoint, int preScale, double *rDx, double *rDy, vector<PointD> &oldDotL, vector<PointD> &newDotL)
- {
- int i, j, k;
- PointD swq, qstar, newP, tmpP;
- double sw;
-
- double ratio;
-
- if (preScale) {
- ratio = sqrt(calcArea(newDotL) / calcArea(oldDotL));
- for (i = 0; i < nPoint; i++) {
- newDotL[i].x *= 1 / ratio;
- newDotL[i].y *= 1 / ratio;
- }
- }
- double *w = new double[nPoint];
-
- if (nPoint < 2) {
- //rDx.setTo(0);
- //rDy.setTo(0);
- return;
- }
- PointD swp, pstar, curV, curVJ, Pi, PiJ, Qi;
- double miu_r;
-
- for (i = 0;; i += gridSize) {
- if (i >= tarW && i < tarW + gridSize - 1)
- i = tarW - 1;
- else if (i >= tarW)
- break;
- for (j = 0;; j += gridSize) {
- if (j >= tarH && j < tarH + gridSize - 1)
- j = tarH - 1;
- else if (j >= tarH)
- break;
- sw = 0;
- swp.x = swp.y = 0;
- swq.x = swq.y = 0;
- newP.x = newP.y = 0;
- curV.x = i;
- curV.y = j;
- for (k = 0; k < nPoint; k++) {
- if ((i == oldDotL[k].x) && j == oldDotL[k].y) break;
- if (alpha == 1)
- w[k] = 1 / ((i - oldDotL[k].x) * (i - oldDotL[k].x) +
- (j - oldDotL[k].y) * (j - oldDotL[k].y));
- else
- w[k] = pow((i - oldDotL[k].x) * (i - oldDotL[k].x) +
- (j - oldDotL[k].y) * (j - oldDotL[k].y),
- -alpha);
- sw = sw + w[k];
- swp.x = swp.x + w[k] * oldDotL[k].x;
- swp.y = swp.y + w[k] * oldDotL[k].y;
- swq.x = swq.x + w[k] * newDotL[k].x;
- swq.y = swq.y + w[k] * newDotL[k].y;
- }
- if (k == nPoint) {
- pstar.x = (1 / sw) * swp.x;
- pstar.y = (1 / sw) * swp.y;
- qstar.x = 1 / sw * swq.x;
- qstar.y = 1 / sw * swq.y;
- // Calc miu_r
- double s1 = 0, s2 = 0;
- for (k = 0; k < nPoint; k++) {
- if (i == oldDotL[k].x && j == oldDotL[k].y) continue;
- Pi.x = oldDotL[k].x - pstar.x;
- Pi.y = oldDotL[k].y - pstar.y;
- PiJ.x = -Pi.y, PiJ.y = Pi.x;
- Qi.x = newDotL[k].x - qstar.x;
- Qi.y = newDotL[k].y - qstar.y;
- s1 += w[k] * (Qi.x*Pi.x+Qi.y*Pi.y);
- s2 += w[k] * (Qi.x*PiJ.x+Qi.y*PiJ.y);
- }
- miu_r = sqrt(s1 * s1 + s2 * s2);
- curV.x -= pstar.x;
- curV.y -= pstar.y;
-
- curVJ.x = -curV.y, curVJ.y = curV.x;
-
- for (k = 0; k < nPoint; k++) {
- if (i == oldDotL[k].x && j == oldDotL[k].y) continue;
- Pi.x = oldDotL[k].x - pstar.x;
- Pi.y = oldDotL[k].y - pstar.y;
- PiJ.x = -Pi.y, PiJ.y = Pi.x;
- tmpP.x = (Pi.x*curV.x+Pi.y*curV.y)* newDotL[k].x -
- (PiJ.x*curV.x+PiJ.y*curV.y)* newDotL[k].y;
- tmpP.y = -(Pi.x*curVJ.x+Pi.y*curVJ.y) * newDotL[k].x +
- (PiJ.x*curVJ.x+PiJ.y*curVJ.y) * newDotL[k].y;
- tmpP.x *= w[k] / miu_r;
- tmpP.y *= w[k] / miu_r;
- newP.x += tmpP.x;
- newP.y += tmpP.y;
- }
- newP.x += qstar.x;
- newP.y += qstar.y;
- } else {
- newP = newDotL[k];
- }
-
- if (preScale) {
- rDx[j * tarW + i] = newP.x * ratio - i;
- rDy[j * tarW + i] = newP.y * ratio - j;
- } else {
- rDx[j * tarW + i] = newP.x - i;
- rDy[j * tarW + i] = newP.y - j;
- }
- }
- }
- delete[] w;
-
- if (preScale!=0) {
- for (i = 0; i < nPoint; i++){
- newDotL[i].x *= ratio;
- newDotL[i].y *= ratio;
- }
- }
- }
- static void calcDelta_Similarity(int srcW, int srcH, int tarW, int tarH, double alpha, int gridSize, int nPoint, int preScale, double *rDx, double *rDy, vector<PointD> &oldDotL, vector<PointD> &newDotL)
- {
- int i, j, k;
-
- PointD swq, qstar, newP, tmpP;
- double sw;
-
- double ratio;
-
- if (preScale) {
- ratio = sqrt(calcArea(newDotL) / calcArea(oldDotL));
- for (i = 0; i < nPoint; i++) {
- newDotL[i].x *= 1 / ratio;
- newDotL[i].y *= 1 / ratio;
- }
- }
- double *w = new double[nPoint];
-
- if (nPoint < 2) {
- return;
- }
-
- PointD swp, pstar, curV, curVJ, Pi, PiJ;
- double miu_s;
-
- for (i = 0;; i += gridSize) {
- if (i >= tarW && i < tarW + gridSize - 1)
- i = tarW - 1;
- else if (i >= tarW)
- break;
- for (j = 0;; j += gridSize) {
- if (j >= tarH && j < tarH + gridSize - 1)
- j = tarH - 1;
- else if (j >= tarH)
- break;
- sw = 0;
- swp.x = swp.y = 0;
- swq.x = swq.y = 0;
- newP.x = newP.y = 0;
- curV.x = i;
- curV.y = j;
- for (k = 0; k < nPoint; k++) {
- if ((i == oldDotL[k].x) && j == oldDotL[k].y) break;
- w[k] = 1 / ((i - oldDotL[k].x) * (i - oldDotL[k].x) +
- (j - oldDotL[k].y) * (j - oldDotL[k].y));
- sw = sw + w[k];
- swp.x = swp.x + w[k] * oldDotL[k].x;
- swp.y = swp.y + w[k] * oldDotL[k].y;
- swq.x = swq.x + w[k] * newDotL[k].x;
- swq.y = swq.y + w[k] * newDotL[k].y;
- }
- if (k == nPoint) {
- pstar.x = (1 / sw) * swp.x;
- pstar.y = (1 / sw) * swp.y;
- qstar.x = 1 / sw * swq.x;
- qstar.y = 1 / sw * swq.y;
- // Calc miu_s
- miu_s = 0;
- for (k = 0; k < nPoint; k++) {
- if (i == oldDotL[k].x && j == oldDotL[k].y) continue;
-
- Pi.x = oldDotL[k].x - pstar.x;
- Pi.y = oldDotL[k].y - pstar.y;
- miu_s += w[k] * (Pi.x*Pi.x+Pi.y*Pi.y);
- }
-
- curV.x -= pstar.x;
- curV.y -= pstar.y;
- curVJ.x = -curV.y, curVJ.y = curV.x;
-
- for (k = 0; k < nPoint; k++) {
- if (i == oldDotL[k].x && j == oldDotL[k].y) continue;
-
- Pi.x = oldDotL[k].x - pstar.x;
- Pi.y = oldDotL[k].y - pstar.y;
- PiJ.x = -Pi.y, PiJ.y = Pi.x;
-
- tmpP.x = (Pi.x*curV.x+Pi.y*curV.y) * newDotL[k].x -
- (PiJ.x*curV.x+PiJ.y*curV.y) * newDotL[k].y;
- tmpP.y = -(Pi.x*curVJ.x+Pi.y*curVJ.y) * newDotL[k].x +
- (PiJ.x*curVJ.x+PiJ.y*curVJ.y) * newDotL[k].y;
- tmpP.x *= w[k] / miu_s;
- tmpP.y *= w[k] / miu_s;
- newP.x += tmpP.x;
- newP.y += tmpP.y;
- }
- newP.x += qstar.x;
- newP.y += qstar.y;
- } else {
- newP = newDotL[k];
- }
-
- rDx[j * tarW + i] = newP.x - i;
- rDy[j * tarW + i] = newP.y - j;
- }
- }
-
- delete[] w;
- if (preScale!=0) {
- for (i = 0; i < nPoint; i++){
- newDotL[i].x *= ratio;
- newDotL[i].y *= ratio;
- }
- }
- }
- static int GetNewImg(unsigned char* oriImg, int width, int height, int stride, unsigned char* tarImg, int tarW, int tarH, int tarStride, int gridSize, double* rDx, double* rDy, double transRatio)
- {
- int i, j;
- double di, dj;
- double nx, ny;
- int nxi, nyi, nxi1, nyi1;
- double deltaX, deltaY;
- double w, h;
- int ni, nj;
- int pos, posa, posb, posc, posd;
- for (i = 0; i < tarH; i += gridSize)
- for (j = 0; j < tarW; j += gridSize) {
- ni = i + gridSize, nj = j + gridSize;
- w = h = gridSize;
- if (ni >= tarH) ni = tarH - 1, h = ni - i + 1;
- if (nj >= tarW) nj = tarW - 1, w = nj - j + 1;
- for (di = 0; di < h; di++)
- for (dj = 0; dj < w; dj++) {
- deltaX =
- bilinear_interp(di / h, dj / w, rDx[i * tarW + j], rDx[i * tarW + nj],
- rDx[ni * tarW + j], rDx[ni * tarW + nj]);
- deltaY =
- bilinear_interp(di / h, dj / w, rDy[i * tarW + j], rDy[i * tarW + nj],
- rDy[ni * tarW + j], rDy[ni * tarW + nj]);
- nx = j + dj + deltaX * transRatio;
- ny = i + di + deltaY * transRatio;
- if (nx > width - 1) nx = width - 1;
- if (ny > height - 1) ny = height - 1;
- if (nx < 0) nx = 0;
- if (ny < 0) ny = 0;
- nxi = int(nx);
- nyi = int(ny);
- nxi1 = ceil(nx);
- nyi1 = ceil(ny);
- pos = (int)(i + di) * tarStride + ((int)(j + dj) << 2);
- posa = nyi * stride + (nxi << 2);
- posb = nyi * stride + (nxi1 << 2);
- posc = nyi1 * stride + (nxi << 2);
- posd = nyi1 * stride + (nxi1 << 2);
- tarImg[pos] = (unsigned char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa], oriImg[posb], oriImg[posc], oriImg[posd]);
- tarImg[pos + 1] = (unsigned char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa + 1],oriImg[posb + 1], oriImg[posc + 1], oriImg[posd + 1]);
- tarImg[pos + 2] = (unsigned char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa + 2],oriImg[posb + 2], oriImg[posc + 2], oriImg[posd + 2]);
- tarImg[pos + 3] = (unsigned char)bilinear_interp(ny - nyi, nx - nxi, oriImg[posa + 3],oriImg[posb + 3], oriImg[posc + 3], oriImg[posd + 3]);
- }
- }
- return 0;
- };
-
- static void MLSImageWrapping(unsigned char* oriImg,int width, int height, int stride,const vector<PointD > &qsrc, const vector<PointD > &qdst, unsigned char* tarImg, int outW, int outH, int outStride, double transRatio, int preScale, int gridSize, int method)
- {
- int srcW = width;
- int srcH = height;
- int tarW = outW;
- int tarH = outH;
- double alpha = 1;
- int nPoint;
- int len = tarH * tarW;
- vector<PointD> oldDotL, newDotL;
- double *rDx = NULL,*rDy = NULL;
- setSrcPoints(qsrc,newDotL,&nPoint);
- setDstPoints(qdst,oldDotL,&nPoint);
- rDx = (double*)malloc(sizeof(double) * len);
- rDy = (double*)malloc(sizeof(double) * len);
- memset(rDx, 0, sizeof(double) * len);
- memset(rDy, 0, sizeof(double) * len);
- if(method!=0)
- calcDelta_Similarity(srcW, srcH, tarW, tarH, alpha, gridSize, nPoint, preScale, rDx, rDy, oldDotL, newDotL);
- else
- calcDelta_rigid(srcW, srcH, tarW, tarH, alpha, gridSize, nPoint, preScale, rDx, rDy, oldDotL, newDotL);
- GetNewImg(oriImg, srcW, srcH, stride, tarImg, tarW, tarH, outStride, gridSize, rDx, rDy, transRatio);
- if(rDx != NULL)
- free(rDx);
- if(rDy != NULL)
- free(rDy);
- };
- int f_TMLSImagewarpping(unsigned char* srcData, int width ,int height, int stride, unsigned char* dstData, int outW, int outH, int outStride, int srcPoint[], int dragPoint[], int pointNum, double intensity, int preScale, int gridSize, int method)
- {
- int res = 0;
- vector<PointD> qDst;
- vector<PointD> qSrc;
- PointD point = {0};
- int len = 0;
- for(int i = 0; i < pointNum; i++)
- {
- len = (i << 1);
- point.x = srcPoint[len];
- point.y = srcPoint[len + 1];
- qSrc.push_back(point);
- point.x = dragPoint[len];
- point.y = dragPoint[len + 1];
- qDst.push_back(point);
- }
- MLSImageWrapping(srcData, width, height, stride, qSrc, qDst, dstData, outW, outH, outStride, intensity, preScale,gridSize, method);
- return res;
- };
4.将模版与人脸五官图像进行融合;
融合算法主要有alpha融合,Photoshop图层混合,泊松融合等;
alpha融合: S * alpha + D*(1-alpha)
图层混合公式如下:
泊松融合:算法详解
上述过程即传统算法流程,其中对美妆效果起决定性的是人脸特征点识别,如果没有准确的特征点,再好的妆容模版,上妆效果也出不来;
比如下面的例子:
图1中,由于眼睛特征点位置不准确,睫毛妆容已经偏离了眼睛区域;
图2中,由于拍照光线较暗,腮红明显,逼真度过低;
图3中,由于人眼和眉毛被部分遮挡,因此,传统算法的睫毛和眉毛效果悬浮在了头发之上;
目前传统算法相关的论文资料如下:
Rule-Based Facial Makeup Recommendation System.
Example-Based Cosmetic Transfer.
Region-based Face Makeup using example face images.
Simulating Makeup through Physics-based Manipulation of Intrinsic Image Layers.
A Visual Representation for editing face images.
Digital Face Makeup By Example.
在传统算法中,有一种妆容迁移算法,该算法可以直接将一张妆容效果图中的妆容特征,迁移到任意一张人像照片中去,实际上也是与人脸特征点密不可分,具体连接可参考:blog.csdn.net/trent1985/a…
目前AI美妆相关的论文资料如下:
Makeup Like a Superstar Deep Localized Makeup Transfer Network.
Examples-Rules Guided Deep Neural Network for Makeup Recommendation.
上述两篇基于深度学习的美妆算法论文主要思想有两个:
1,对于第一篇论文主要是对人像进行五官分析,获取肤色,眉毛颜色,唇色等等信息,然后进行不同妆容的最佳匹配,最后上妆;
框架如下:
2,对五官进行分别提取分类成不同的style,依据样例数据的特征style,进行最优匹配并上妆;
框架如下:
上述两篇算法论文,依旧是建立在人脸特征点的基础上研究的。
本人针对传统美妆算法,结合深度学习,做了如下改进:
1.只需要人脸检测框,不依赖于人脸特征点;
2.不受五官遮挡和光线影响;
3.妆容效果逼真度提高;
本人算法框架:
1.人脸检测,得到正方形人脸框,包含五官区域;
2.基于全卷积网络,以人脸框图像作为输入,上妆之后的人脸五官效果图作为输出,进行学习训练;
妆容模版使用如下模版:
在Fig.4模板妆容中,分别进行了眉毛处理,眼影、睫毛和唇彩的上妆,整体肤色以及其他内容均无调整;
训练中迭代10次,训练集和验证集准确率均达到了94%-95%,本人训练样本选取了500张,数据比较少,这里仅仅探讨可行性与方法分析;
3.使用2中的训练模型,对测试图进行上妆;
效果图如下:
上述效果图中我们可以看到,基于深度学习的美妆效果,避免了五官遮挡的影响,同时上妆效果更加自然,对环境光的鲁棒性也较高,本文这里未给出具体的网络模型与参数,不过思路大家已经可以借鉴!目前算法处于研究测试阶段,后续本人将公布完整的DEMO!
本人QQ:1358009172