该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类应用。希望文章对您有所帮助,如果有不足之处,还请海涵~
同时推荐作者的C++图像系列知识:
[数字图像处理] 一.MFC详解显示BMP格式图片
[数字图像处理] 二.MFC单文档分割窗口显示图片
[数字图像处理] 三.MFC实现图像灰度、采样和量化功能详解
[数字图像处理] 四.MFC对话框绘制灰度直方图
[数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解
[数字图像处理] 六.MFC空间几何变换之图像平移、镜像、旋转、缩放详解
[数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解
前文参考:
[Python图像处理] 一.图像处理基础知识及OpenCV入门函数
[Python图像处理] 二.OpenCV+Numpy库读取与修改像素
[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理
[Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波
本篇文章主要讲解Python调用OpenCV实现图像融合及加法运算,包括三部分知识:图像融合、图像加法运算、图像类型转换。全文均是基础知识,希望对您有所帮助。
1.图像加法运算
2.图像融合
3.图像类型转换
PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时部分参考网易云视频,推荐大家去学习。
一.图像加法运算
1.Numpy库加法
其运算方法是:目标图像 = 图像1 + 图像2,运算结果进行取模运算。
1) 当像素值<=255时,结果为“图像1+图像2”,例如:120+48=168
2) 当像素值>255时,结果为对255取模的结果,例如:(255+64)%255=64
2.OpenCV加法运算
另一种方法是直接调用OpenCV库实现图像加法运算,方法如下:
目标图像 = cv2.add(图像1, 图像2)
此时结果是饱和运算,即:
1) 当像素值<=255时,结果为“图像1+图像2”,例如:120+48=168
2) 当像素值>255时,结果为255,例如:(255+64) = 255
两种方法对应的代码如下所示:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
img = cv2.imread('picture.bmp')
test = img
#方法一:Numpy加法运算
result1 = img + test
#方法二:OpenCV加法运算
result2 = cv2.add(img, test)
#显示图像
cv2.imshow("original", img)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示,其中result1为第一种方法,result2为第二种方法,白色点255更多。
注意:参与运算的图像大小和类型必须一致。下面是对彩色图像进行加法运算的结果。
二.图像融合
图像融合通常是指将2张或2张以上的图像信息融合到1张图像上,融合的图像含有更多的信息,能够更方便人们观察或计算机处理。如下图所示,将两张不清晰的图像融合得到更清晰的图。
图像融合是在图像加法的基础上增加了系数和亮度调节量。
1) 图像加法:目标图像 = 图像1 + 图像2
2) 图像融合:目标图像 = 图像1 * 系数1 + 图像2 * 系数2 + 亮度调节量
主要调用的函数是addWeighted,方法如下:
dst = cv2.addWeighter(scr1, alpha, src2, beta, gamma)
dst = src1 * alpha + src2 * beta + gamma
其中参数gamma不能省略。
代码如下:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
src1 = cv2.imread('test22.jpg')
src2 = cv2.imread('picture.bmp')
#图像融合
result = cv2.addWeighted(src1, 1, src2, 1, 0)
#显示图像
cv2.imshow("src1", src1)
cv2.imshow("src2", src2)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
需要注意的是,两张融合的图像像素大小需要一致,如下图所示,将两张RGB且像素410*410的图像融合。
设置不同的比例的融合如下所示: result = cv2.addWeighted(src1, 0.6, src2, 0.8, 10)
三.图像类型转换
图像类型转换是指将一种类型转换为另一种类型,比如彩色图像转换为灰度图像、BGR图像转换为RGB图像。OPenCV提供了200多种不同类型之间的转换,其中最常用的包括3类,如下:
- cv2.COLOR_BGR2GRAY
- cv2.COLOR_BGR2RGB
- cv2.COLOR_GRAY2BGR
代码如下所示:
#encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图片
src = cv2.imread('01.bmp')
#图像类型转换
result = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
#显示图像
cv2.imshow("src", src)
cv2.imshow("result", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示:
如果使用通道转化,则结果如下图所示:
result = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
图像处理通常需要将彩色图像转换为灰度图像再进行后续的操作,更多知识后续将继续分享,希望对着喜欢,尤其是做图像识别、图像处理的同学。
希望文章对大家有所帮助,如果有错误或不足之处,还请海涵。九月份准备出去休婚假了,好好和她享受最幸福的时光,不被工作所烦扰,但每当自己写完一篇文章或解答一个问题,这种分享知识的快感,真的让我着迷,这就是知识的魅力,老师的快乐吧!
(By:Eastmount 2018-09-03 下午14点 blog.csdn.net/Eastmount/)