分布式作业系统 Elastic-Job-Lite 源码分析 —— 作业分片策略

《Dubbo 实现原理与源码解析 —— 精品合集》《Netty 实现原理与源码解析 —— 精品合集》
《Spring 实现原理与源码解析 —— 精品合集》《MyBatis 实现原理与源码解析 —— 精品合集》
《数据库实体设计合集》

摘要: 原创出处 http://www.iocoder.cn/Elastic-Job/job-sharding-strategy/ 「芋道源码」欢迎转载,保留摘要,谢谢!

本文基于 Elastic-Job V2.1.5 版本分享

《分布式作业系统 Elastic-Job-Lite 源码分析 —— 作业分片策略》

🙂🙂🙂关注**微信公众号:【芋道源码】**有福利:

  1. RocketMQ / MyCAT / Sharding-JDBC 所有源码分析文章列表
  2. RocketMQ / MyCAT / Sharding-JDBC 中文注释源码 GitHub 地址
  3. 您对于源码的疑问每条留言将得到认真回复。甚至不知道如何读源码也可以请教噢
  4. 新的源码解析文章实时收到通知。每周更新一篇左右
  5. 认真的源码交流微信群。

1. 概述

本文主要分享 Elastic-Job-Lite 作业分片策略

涉及到主要类的类图如下( 打开大图 ):

《分布式作业系统 Elastic-Job-Lite 源码分析 —— 作业分片策略》

你行好事会因为得到赞赏而愉悦
同理,开源项目贡献者会因为 Star 而更加有动力
为 Elastic-Job 点赞!传送门

2. 自带作业分片策略

JobShardingStrategy,作业分片策略接口。分片策略通过实现接口的 #sharding(...) 方法提供作业分片的计算

public interface JobShardingStrategy {
    
    /**
     * 作业分片.
     * 
     * @param jobInstances 所有参与分片的单元列表
     * @param jobName 作业名称
     * @param shardingTotalCount 分片总数
     * @return 分片结果
     */
    Map<JobInstance, List<Integer>> sharding(List<JobInstance> jobInstances, String jobName, int shardingTotalCount);
}

Elastic-Job-Lite 提供三种自带的作业分片策略:

  • AverageAllocationJobShardingStrategy:基于平均分配算法的分片策略。
  • OdevitySortByNameJobShardingStrategy:根据作业名的哈希值奇偶数决定IP升降序算法的分片策略。
  • RotateServerByNameJobShardingStrategy:根据作业名的哈希值对作业节点列表进行轮转的分片策略。

2.1 AverageAllocationJobShardingStrategy

AverageAllocationJobShardingStrategy,基于平均分配算法的分片策略。Elastic-Job-Lite 默认的作业分片策略

如果分片不能整除,则不能整除的多余分片将依次追加到序号小的作业节点。如:
如果有3台作业节点,分成9片,则每台作业节点分到的分片是:1=[0,1,2], 2=[3,4,5], 3=[6,7,8]
如果有3台作业节点,分成8片,则每台作业节点分到的分片是:1=[0,1,6], 2=[2,3,7], 3=[4,5]
如果有3台作业节点,分成10片,则每台作业节点分到的分片是:1=[0,1,2,9], 2=[3,4,5], 3=[6,7,8]

代码实现如下:

public final class AverageAllocationJobShardingStrategy implements JobShardingStrategy {
    
    @Override
    public Map<JobInstance, List<Integer>> sharding(final List<JobInstance> jobInstances, final String jobName, final int shardingTotalCount) {
        // 不存在 作业运行实例
        if (jobInstances.isEmpty()) {
            return Collections.emptyMap();
        }
        // 分配能被整除的部分
        Map<JobInstance, List<Integer>> result = shardingAliquot(jobInstances, shardingTotalCount);
        // 分配不能被整除的部分
        addAliquant(jobInstances, shardingTotalCount, result);
        return result;
    }
}

  • 调用 #shardingAliquot(...) 方法分配能被整除的部分。能整除的咱就不举例子。如果有 3 台作业节点,分成 8 片,被整除的部分是前 6 片 [0, 1, 2, 3, 4, 5],调用该方法结果:1=[0,1], 2=[2,3], 3=[4,5]。

    private Map<JobInstance, List<Integer>> shardingAliquot(final List<JobInstance> shardingUnits, final int shardingTotalCount) {
       Map<JobInstance, List<Integer>> result = new LinkedHashMap<>(shardingTotalCount, 1);
       int itemCountPerSharding = shardingTotalCount / shardingUnits.size(); // 每个作业运行实例分配的平均分片数
       int count = 0;
       for (JobInstance each : shardingUnits) {
           List<Integer> shardingItems = new ArrayList<>(itemCountPerSharding + 1);
           // 顺序向下分配
           for (int i = count * itemCountPerSharding; i < (count + 1) * itemCountPerSharding; i++) {
               shardingItems.add(i);
           }
           result.put(each, shardingItems);
           count++;
       }
       return result;
    }
    

  • 调用 #addAliquant(...) 方法分配能不被整除的部分。继续上面的例子。不能被整除的部分是后 2 片 [6, 7],调用该方法结果:1=[0,1] + [6], 2=[2,3] + [7], 3=[4,5]。

    private void addAliquant(final List<JobInstance> shardingUnits, final int shardingTotalCount, final Map<JobInstance, List<Integer>> shardingResults) {
       int aliquant = shardingTotalCount % shardingUnits.size(); // 余数
       int count = 0;
       for (Map.Entry<JobInstance, List<Integer>> entry : shardingResults.entrySet()) {
           if (count < aliquant) {
               entry.getValue().add(shardingTotalCount / shardingUnits.size() * shardingUnits.size() + count);
           }
           count++;
       }
    }
    

如何实现主备

通过作业配置设置总分片数为 1 ( JobCoreConfiguration.shardingTotalCount = 1 ),只有一个作业分片能够分配到作业分片项,从而达到一主N备

2.2 OdevitySortByNameJobShardingStrategy

OdevitySortByNameJobShardingStrategy,根据作业名的哈希值奇偶数决定IP升降序算法的分片策略。

作业名的哈希值为奇数则IP 降序.
作业名的哈希值为偶数则IP 升序.
用于不同的作业平均分配负载至不同的作业节点.
如:

  1. 如果有3台作业节点, 分成2片, 作业名称的哈希值为奇数, 则每台作业节点分到的分片是: 1=[ ], 2=[1], 3=[0].
  2. 如果有3台作业节点, 分成2片, 作业名称的哈希值为偶数, 则每台作业节点分到的分片是: 1=[0], 2=[1], 3=[ ].

实现代码如下:

@Override
public Map<JobInstance, List<Integer>> sharding(final List<JobInstance> jobInstances, final String jobName, final int shardingTotalCount) {
   long jobNameHash = jobName.hashCode();
   if (0 == jobNameHash % 2) {
       Collections.reverse(jobInstances);
   }
   return averageAllocationJobShardingStrategy.sharding(jobInstances, jobName, shardingTotalCount);
}

  • 从实现代码上,仿佛和 IP 升降序没什么关系?答案在传递进来的参数 jobInstancesjobInstances 已经是按照 IP 进行降序的数组。所以当判断到作业名的哈希值为偶数时,进行数组反转( Collections#reverse(...) )实现按照 IP 升序。下面看下为什么说jobInstances 已经按照 IP 进行降序

    // ZookeeperRegistryCenter.java
    @Override
    public List<String> getChildrenKeys(final String key) {
       try {
           List<String> result = client.getChildren().forPath(key);
           Collections.sort(result, new Comparator<String>() {
               
               @Override
               public int compare(final String o1, final String o2) {
                   return o2.compareTo(o1);
               }
           });
           return result;
       } catch (final Exception ex) {
           RegExceptionHandler.handleException(ex);
           return Collections.emptyList();
       }
    }
    

  • 调用 AverageAllocationJobShardingStrategy#sharding(...) 方法完成最终作业分片计算。

2.3 RotateServerByNameJobShardingStrategy

RotateServerByNameJobShardingStrategy,根据作业名的哈希值对作业节点列表进行轮转的分片策略。这里的轮转怎么定义呢?如果有 3 台作业节点,顺序为 [0, 1, 2],如果作业名的哈希值根据作业分片总数取模为 1, 作业节点顺序变为 [1, 2, 0]。

分片的目的,是将作业的负载合理的分配到不同的作业节点上,要避免分片策略总是让固定的作业节点负载特别大,其它工作节点负载特别小。这个也是为什么官方对比 RotateServerByNameJobShardingStrategy、AverageAllocationJobShardingStrategy 如下:

AverageAllocationJobShardingStrategy的缺点是,一旦分片数小于作业作业节点数,作业将永远分配至IP地址靠前的作业节点,导致IP地址靠后的作业节点空闲。如:
OdevitySortByNameJobShardingStrategy则可以根据作业名称重新分配作业节点负载。
如果有3台作业节点,分成2片,作业名称的哈希值为奇数,则每台作业节点分到的分片是:1=[0], 2=[1], 3=[]
如果有3台作业节点,分成2片,作业名称的哈希值为偶数,则每台作业节点分到的分片是:3=[0], 2=[1], 1=[]

实现代码如下:

public final class RotateServerByNameJobShardingStrategy implements JobShardingStrategy {
    
    private AverageAllocationJobShardingStrategy averageAllocationJobShardingStrategy = new AverageAllocationJobShardingStrategy();
    
    @Override
    public Map<JobInstance, List<Integer>> sharding(final List<JobInstance> jobInstances, final String jobName, final int shardingTotalCount) {
        return averageAllocationJobShardingStrategy.sharding(rotateServerList(jobInstances, jobName), jobName, shardingTotalCount);
    }
    
    private List<JobInstance> rotateServerList(final List<JobInstance> shardingUnits, final String jobName) {
        int shardingUnitsSize = shardingUnits.size();
        int offset = Math.abs(jobName.hashCode()) % shardingUnitsSize; // 轮转开始位置
        if (0 == offset) {
            return shardingUnits;
        }
        List<JobInstance> result = new ArrayList<>(shardingUnitsSize);
        for (int i = 0; i < shardingUnitsSize; i++) {
            int index = (i + offset) % shardingUnitsSize;
            result.add(shardingUnits.get(index));
        }
        return result;
    }
}

  • 调用 #rotateServerList(...) 实现作业节点数组轮转
  • 调用 AverageAllocationJobShardingStrategy#sharding(...) 方法完成最终作业分片计算。

3. 自定义作业分片策略

可能在你的业务场景下,需要实现自定义的作业分片策略。通过定义类实现 JobShardingStrategy 接口即可:

public final class OOXXShardingStrategy implements JobShardingStrategy {

    @Override
    public Map<JobInstance, List<Integer>> sharding(final List<JobInstance> jobInstances, final String jobName, final int shardingTotalCount) {
        // 实现逻辑
    }

}

实现后,配置实现类的全路径到 Lite作业配置( LiteJobConfiguration )的 jobShardingStrategyClass 属性。

作业进行分片计算时,作业分片策略工厂( JobShardingStrategyFactory ) 会创建作业分片策略实例:

public final class JobShardingStrategyFactory {
    
    /**
     * 获取作业分片策略实例.
     * 
     * @param jobShardingStrategyClassName 作业分片策略类名
     * @return 作业分片策略实例
     */
    public static JobShardingStrategy getStrategy(final String jobShardingStrategyClassName) {
        if (Strings.isNullOrEmpty(jobShardingStrategyClassName)) {
            return new AverageAllocationJobShardingStrategy();
        }
        try {
            Class<?> jobShardingStrategyClass = Class.forName(jobShardingStrategyClassName);
            if (!JobShardingStrategy.class.isAssignableFrom(jobShardingStrategyClass)) {
                throw new JobConfigurationException("Class '%s' is not job strategy class", jobShardingStrategyClassName);
            }
            return (JobShardingStrategy) jobShardingStrategyClass.newInstance();
        } catch (final ClassNotFoundException | InstantiationException | IllegalAccessException ex) {
            throw new JobConfigurationException("Sharding strategy class '%s' config error, message details are '%s'", jobShardingStrategyClassName, ex.getMessage());
        }
    }
}

666. 彩蛋

《分布式作业系统 Elastic-Job-Lite 源码分析 —— 作业分片策略》

旁白君:雾草,刚夸奖你,就又开始水更。
芋道君:咳咳咳,作业分片策略炒鸡重要的好不好!嘿嘿嘿,为《Elastic-Job-Lite 源码分析 —— 作业分片》做个铺垫嘛。

道友,赶紧上车,分享一波朋友圈!

    原文作者:算法小白
    原文地址: https://juejin.im/entry/5c045602f265da61223a173c
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞