tetrahedron/center>
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5726
Description
Given four points ABCD, if ABCD is a tetrahedron, calculate the inscribed sphere of ABCD.
Input
Multiple test cases (test cases ≤100).
Each test cases contains a line of 12 integers [−1e6,1e6] indicate the coordinates of four vertices of ABCD.
Input ends by EOF.
Output
Print the coordinate of the center of the sphere and the radius, rounded to 4 decimal places.
If there is no such sphere, output “O O O O”
Sample Input
0 0 0 2 0 0 0 0 2 0 2 0
0 0 0 2 0 0 3 0 0 4 0 0
Sample Output
0.4226 0.4226 0.4226 0.4226
O O O O
Hint
题意
给你一个四面体,求内切球的坐标和半径。
题解:
网上去搜了一堆公式,随便抄了抄就过去了。
直接百度就好了,什么体积坐标什么的。。。
wa了半天,队友才发现是他自己叉积写错了,尴尬。
代码
#include <bits/stdc++.h>
using namespace std;
struct point
{
double x,y,z;
}P[5];
struct pingmian
{
double a,b,c,d;
}pm[5];
double area[5];
double P2planeDist(double x, double y, double z, double a, double b, double c, double d)
{
return fabs(a*x+b*y+c*z+d)/sqrt(a*a+b*b+c*c);
}
double dist(point p0,point p1)
{
return sqrt((p0.x-p1.x)*(p0.x-p1.x)+(p0.y-p1.y)*(p0.y-p1.y)+(p0.z-p1.z)*(p0.z-p1.z));
}
int check(point p0,point p1,point p2)
{
p1.x-=p0.x,p1.y-=p0.y,p1.z-=p0.z;
p2.x-=p0.x,p2.y-=p0.y,p2.z-=p0.z;
if((p1.x*p2.y==p1.y*p2.x)&&(p1.x*p2.z==p1.z*p2.x)&&(p1.y*p2.z==p1.z*p2.y)) return 0;
return 1;
}
point mul(point p0,point p1)
{
point p2;
p2.x=p0.y*p1.z-p0.z*p1.y;
p2.y=-p0.x*p1.z+p0.z*p1.x;
p2.z=p0.x*p1.y-p0.y*p1.x;
return p2;
}
void cal(int p,point p0,point p1,point p2)
{
double a=dist(p0,p1),b=dist(p1,p2),c=dist(p0,p2);
double d=(a+b+c)/2.0;
area[p]=sqrt(d*(d-a)*(d-b)*(d-c));
p1.x-=p0.x,p1.y-=p0.y,p1.z-=p0.z;
p2.x-=p0.x,p2.y-=p0.y,p2.z-=p0.z;
point p3=mul(p1,p2);
pm[p].a=p3.x,pm[p].b=p3.y,pm[p].c=p3.z;
pm[p].d=-(pm[p].a*p0.x+pm[p].b*p0.y+pm[p].c*p0.z);
return ;
}
int main()
{
while(scanf("%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf",&P[0].x,&P[0].y,&P[0].z,&P[1].x,&P[1].y,&P[1].z,&P[2].x,&P[2].y,&P[2].z,&P[3].x,&P[3].y,&P[3].z)!=EOF)
{
if(!(check(P[0],P[1],P[2])&&check(P[0],P[1],P[3])&&check(P[0],P[2],P[3])&&check(P[1],P[2],P[3])))
{
printf("O O O O\n");
continue;
}
cal(3,P[0],P[1],P[2]);
cal(2,P[0],P[1],P[3]);
cal(1,P[0],P[2],P[3]);
cal(0,P[1],P[2],P[3]);
double r=area[3]*P2planeDist(P[3].x,P[3].y,P[3].z,pm[3].a,pm[3].b,pm[3].c,pm[3].d)/(area[0]+area[1]+area[2]+area[3]);
// cout<<pm[3].a<<" "<<pm[3].b<<" "<<pm[3].c<<" "<<pm[3].d<<endl;
// cout<<P2planeDist(P[3].x,P[3].y,P[3].z,pm[3].a,pm[3].b,pm[3].c,pm[3].d)<<endl;
point ans;
if(r<1e-9)
{
printf("O O O O\n");
continue;
}
// cout<<area[0]<<" "<<area[1]<<" "<<area[2]<<" "<<area[3]<<endl;
ans.x=(area[0]*P[0].x+area[1]*P[1].x+area[2]*P[2].x+area[3]*P[3].x)/(area[0]+area[1]+area[2]+area[3]);
ans.y=(area[0]*P[0].y+area[1]*P[1].y+area[2]*P[2].y+area[3]*P[3].y)/(area[0]+area[1]+area[2]+area[3]);
ans.z=(area[0]*P[0].z+area[1]*P[1].z+area[2]*P[2].z+area[3]*P[3].z)/(area[0]+area[1]+area[2]+area[3]);
printf("%.4f %.4f %.4f %.4f\n",ans.x,ans.y,ans.z,r);
}
return 0;
}