SQLAlchemy ORM教程之二:Query

SQLAlchemy教程系列索引

这是继SQLAlchemy ORM教程之一:Create后的第二篇教程。在上一篇中我们主要是解决了如何配置ORM系统,建立从类到表的映射的过程,以及如何插入和修改记录。在这个教程中我们主要解决使用的问题。

Query

Sessionquery函数会返回一个Query对象。query函数可以接受多种参数类型。可以是类,或者是类的instrumented descriptor。下面的这个例子取出了所有的User记录。

>>> for instance in session.query(User).order_by(User.id):
...     print(instance.name, instance.fullname)
ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone

Query也接受ORM-instrumented descriptors作为参数。当多个参数传入时,返回结果为以同样顺序排列的tuples

>>> for name, fullname in session.query(User.name, User.fullname):
...     print(name, fullname)
ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone

Query返回的tuples由KeyedTuple这个类提供,其成员除了用下标访问意外,还可以视为实例变量来获取。对应的变量的名称与被查询的类变量名称一样,如下例:

>>> for row in session.query(User, User.name).all():
...    print(row.User, row.name)
<User(name='ed', fullname='Ed Jones', password='f8s7ccs')> ed
<User(name='wendy', fullname='Wendy Williams', password='foobar')> wendy
<User(name='mary', fullname='Mary Contrary', password='xxg527')> mary
<User(name='fred', fullname='Fred Flinstone', password='blah')> fred

你可以通过label()来制定descriptor对应实例变量的名称

>>> for row in session.query(User.name.label('name_label')).all():
...    print(row.name_label)
ed
wendy
mary
fred

而对于类参数而言,要实现同样的定制需要使用aliased

>>> from sqlalchemy.orm import aliased
>>> user_alias = aliased(User, name='user_alias')

SQL>>> for row in session.query(user_alias, user_alias.name).all():
...    print(row.user_alias)
<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>
<User(name='wendy', fullname='Wendy Williams', password='foobar')>
<User(name='mary', fullname='Mary Contrary', password='xxg527')>
<User(name='fred', fullname='Fred Flinstone', password='blah')>

基本的查询操作除了上面这些之外,还包括OFFSET和LIMIT,这个可以通过Python的array slice来完成。

>>> for u in session.query(User).order_by(User.id)[1:3]:
...    print(u)
<User(name='wendy', fullname='Wendy Williams', password='foobar')>
<User(name='mary', fullname='Mary Contrary', password='xxg527')>

上述过程实际上只涉及了整体取出的操作,而没有进行筛选,筛选常用的函数是filter_byfilter。其中后者比起前者要更灵活一些,你可以在后者的参数中使用python的运算符。

>>> for name, in session.query(User.name).\
...             filter_by(fullname='Ed Jones'):
...    print(name)
ed
>>> for name, in session.query(User.name).\
...             filter(User.fullname=='Ed Jones'):
...    print(name)
ed

注意Query对象是generative的,这意味你可以把他们串接起来调用,如下:

>>> for user in session.query(User).\
...          filter(User.name=='ed').\
...          filter(User.fullname=='Ed Jones'):
...    print(user)
<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>

串接的filter之间是的关系。

常用的filter操作符

下面的这些操作符可以应用在filter函数中

  • equals:
query.filter(User.name == 'ed')
  • not equals:
query.filter(User.name != 'ed')
  • LIKE:
query.filter(User.name.like('%ed%'))
  • IN:
query.filter(User.name.in_(['ed', 'wendy', 'jack']))

# works with query objects too:
query.filter(User.name.in_(
        session.query(User.name).filter(User.name.like('%ed%'))
))
  • NOT IN:
query.filter(~User.name.in_(['ed', 'wendy', 'jack']))
  • IS NULL:
query.filter(User.name == None)

# alternatively, if pep8/linters are a concern
query.filter(User.name.is_(None))
  • IS NOT NULL:
query.filter(User.name != None)

# alternatively, if pep8/linters are a concern
query.filter(User.name.isnot(None))
  • AND:
# use and_()
from sqlalchemy import and_
query.filter(and_(User.name == 'ed', User.fullname == 'Ed Jones'))

# or send multiple expressions to .filter()
query.filter(User.name == 'ed', User.fullname == 'Ed Jones')

# or chain multiple filter()/filter_by() calls
query.filter(User.name == 'ed').filter(User.fullname == 'Ed Jones')
  • OR:
from sqlalchemy import or_
query.filter(or_(User.name == 'ed', User.name == 'wendy'))
  • MATCH:
query.filter(User.name.match('wendy'))

返回列表(List)和单项(Scalar)

很多Query的方法执行了SQL命令并返回了取出的数据库结果。

  • all()返回一个列表:
>>> query = session.query(User).filter(User.name.like('%ed')).order_by(User.id)
SQL>>> query.all()
[<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>,
      <User(name='fred', fullname='Fred Flinstone', password='blah')>]
  • first()返回至多一个结果,而且以单项形式,而不是只有一个元素的tuple形式返回这个结果.
>>> query.first()
<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>
  • one()返回且仅返回一个查询结果。当结果的数量不足一个或者多于一个时会报错。
>>> user = query.one()
Traceback (most recent call last):
...
MultipleResultsFound: Multiple rows were found for one()

没有查找到结果时:

>>> user = query.filter(User.id == 99).one()
Traceback (most recent call last):
...
NoResultFound: No row was found for one()
  • one_or_none():从名称可以看出,当结果数量为0时返回None, 多于1个时报错

  • scalar()one()类似,但是返回单项而不是tuple

嵌入使用SQL

你可以在Query中通过text()使用SQL语句。例如:

>>> from sqlalchemy import text
>>> for user in session.query(User).\
...             filter(text("id<224")).\
...             order_by(text("id")).all():
...     print(user.name)
ed
wendy
mary
fred

除了上面这种直接将参数写进字符串的方式外,你还可以通过params()方法来传递参数

>>> session.query(User).filter(text("id<:value and name=:name")).\
...     params(value=224, name='fred').order_by(User.id).one()
<User(name='fred', fullname='Fred Flinstone', password='blah')>

并且,你可以直接使用完整的SQL语句,但是要注意将表名和列明写正确。

>>> session.query(User).from_statement(
...                     text("SELECT * FROM users where name=:name")).\
...                     params(name='ed').all()
[<User(name='ed', fullname='Ed Jones', password='f8s7ccs')>]

计数

Query定义了一个很方便的计数函数count()

>>> session.query(User).filter(User.name.like('%ed')).count()
SELECT count(*) AS count_1
FROM (SELECT users.id AS users_id,
                users.name AS users_name,
                users.fullname AS users_fullname,
                users.password AS users_password
FROM users
WHERE users.name LIKE ?) AS anon_1
('%ed',)
2

注意上面我们同时列出了实际的SQL指令。在SQLAlchemy中,我们总是将被计数的查询打包成一个子查询,然后对这个子查询进行计数。即便是最简单的SELECT count(*) FROM table,也会如此处理。为了更精细的控制计数过程,我们可以采用func.count()这个函数。

>>> from sqlalchemy import func
SQL>>> session.query(func.count(User.name), User.name).group_by(User.name).all()
SELECT count(users.name) AS count_1, users.name AS users_name
FROM users GROUP BY users.name
()
[(1, u'ed'), (1, u'fred'), (1, u'mary'), (1, u'wendy')]

为了实现最简单的SELECT count(*) FROM table,我们可以如下调用

>>> session.query(func.count('*')).select_from(User).scalar()
SELECT count(?) AS count_1
FROM users
('*',)
4

如果我们对User的主键进行计数,那么select_from也可以省略。

>>> session.query(func.count(User.id)).scalar()
SELECT count(users.id) AS count_1
FROM users
()
4

在下一篇教程里面我们将会介绍SQLAlchemy对于『关系』的处理方式,以及针对关系的更加复杂的查询。

教程的第三部分传送门SQLAlchemy ORM教程之三:Relationship

    原文作者:治部少辅
    原文地址: https://www.jianshu.com/p/8d085e2f2657
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞