编程之美2.11——寻找最近点对(POJ 3714)

问题:

给定平面上N个点的坐标,找出距离最近的两个点。


解法:

我们先对N个点的x坐标进行排序,排序我们使用最坏复杂度O(n*logn)的快速排序方法,在排序的过程中minDifferent会递归计算出左右两边的最小距离,再用其中的较小值minum得到以中位数点附近的带状区域[p[median+1].x-median, p[median].x+median],对带状区域的点按照y坐标排序,对带状区域的每个点只需计算最多7个点,就能得到所有可能小于minum的点对。

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;

// 顶点信息
struct Point
{
	double m_x, m_y;
	Point():m_x(0.0),m_y(0.0) {}
	Point(double x, double y):m_x(x),m_y(y){}
	bool operator==(const Point& p) const 
	{return m_x==p.m_x && m_y==p.m_y;}
};

ostream& operator<<(ostream& os, const Point& p)
{
	return os << "(" << p.m_x << "," << p.m_y << ")";
}

// 插入排序
template<class T, class Pr>
void insert_sort(vector<T> &vec, int l, int r, Pr pred)
{
	int i, j;
	for (i=l+1; i<=r; i++)
	{
		T tmp = vec[i];
		for (j=i-1; j>=l && pred(tmp,vec[j]); j--) 
			vec[j+1]=vec[j];
		vec[j+1] = tmp;
	}
}

// 找到key所在的位置
template<class T>
int get_position(vector<T> &vec, int l, int r, T key)
{
	for (int i=l; i<=r; i++)
		if (key == vec[i])
			return i;
	return -1;
}

// 按第一个元素对vec进行划分
template<class T, class Pr>
int partition(vector<T> &vec, int l, int r, Pr pred)
{
	int i, j;
	for (i=l+1,j=l; i<=r; i++)
	{
		if (pred(vec[i],vec[l]))
		{
			++j;
			swap(vec[i],vec[j]);
		}
	}
	swap(vec[j],vec[l]);
	return j;
}

// 顺序统计得到第k个元素的值
template<class T, class Pr>
T select(vector<T> &vec, int l, int r, int k, Pr pred)
{
	int n = r-l+1;
	if (n==1)
	{
		if (k!=0)
			printf("Out of Boundary!\n");
		return vec[l];
	}
	// 找中位数的中位数作为分割点
	int cnt = n/5;
	int tcnt = (n+4)/5;
	int rem = n%5;
	vector<T> group(tcnt);
	int i, j;
	for (i=0,j=l; i<cnt; i++,j+=5)
	{
		insert_sort(vec, j, j+4, pred);
		group[i] = vec[j+2];
	}
	if (rem)
	{
		insert_sort(vec, j, j+rem-1, pred);
		group[i] = vec[j+(rem-1)/2];
	}
	T key = select(group, 0, tcnt-1, (tcnt-1)/2, pred);
	// 找到分割点的位置
	int key_pos = get_position(vec, l, r, key);
	swap(vec[key_pos], vec[l]);
	// 用分割点对数组进行划分,小的在左边,大的在右边
	int pos = partition(vec, l, r, pred);
	int x = pos - l;
	if (x == k) return key;
	else if (x < k) 
		return select(vec, pos+1, r, k-x-1, pred);
	else
		return select(vec, l, pos-1, k, pred);
}

// 计算点a和b的距离
double dist(const Point& a, const Point& b)
{
	double x = a.m_x-b.m_x;
	double y = a.m_y-b.m_y;
	return sqrt(x*x+y*y);
}

bool cmpX(const Point& a, const Point& b)
{
	return a.m_x < b.m_x;
}

bool cmpY(const Point& a, const Point& b)
{
	return a.m_y < b.m_y;
}

double minDifferent(vector<Point> p, int l, int r, vector<Point> &result)
{
	// 按中位数进行划分后的子区域的元素个数都会减小到2或3,不会再到1
	if ((r-l+1)==2)
	{
		result[0] = p[l];
		result[1] = p[r];
		if (cmpX(p[r],p[l])) swap(p[l], p[r]);
		return dist(p[l], p[r]);
	}
	if ((r-l+1)==3)
	{
		insert_sort(p, l, r, cmpX);
		double tmp1 = dist(p[l], p[l+1]);
		double tmp2 = dist(p[l+1], p[l+2]);
		double ret = min(tmp1, tmp2);
		if (tmp1 == ret)
		{
			result[0] = p[l];
			result[1] = p[l+1];
		}
		else
		{
			result[0] = p[l+1];
			result[1] = p[l+2];
		}
		return ret;
	}
	// 大于3个点的情况
	int mid = (r+l)>>1;
	Point median = select(p, l, r, mid-l, cmpX);
	vector<Point> res1(2), res2(2);
	double min_l = minDifferent(p, l, mid, res1);
	double min_r = minDifferent(p, mid+1, r, res2);
	double minum = min(min_l, min_r);
	if (minum == min_l)
	{
		result[0] = res1[0];
		result[1] = res1[1];
	}
	else
	{
		result[0] = res2[0];
		result[1] = res2[1];
	}
	// 对[p[mid+1]-minum, p[mid]+minum]的带状区域按y排序
	vector<Point> yvec;
	int i, j;
	for (i=mid+1; i<=r; i++)
		if (p[i].m_x - p[mid].m_x < minum)
			yvec.push_back(Point(p[i]));
	for (i=mid; i>=l; i--)
		if (p[mid+1].m_x - p[i].m_x < minum)
			yvec.push_back(Point(p[i]));
	sort(yvec.begin(), yvec.end(), cmpY);
	for (i=0; i<yvec.size(); i++)
	{
		// 至多只有与其后最多7个点的距离会小于minum
		for (j=i+1; j<yvec.size() && yvec[j].m_y-yvec[i].m_y<minum &&
			j<=i+7; j++)
		{
			double delta = dist(yvec[i],yvec[j]);
			if (delta < minum)
			{
				minum = delta;
				result[0] = yvec[i];
				result[1] = yvec[j];
			}
		}
	}
	return minum;
}

int main()
{
	int n, i, j, x, y;
	vector<Point> result(2);
	vector<Point> input;
	cin >> n;
	for (i=0; i<n; i++)
	{
		cin >> x;
		cin >> y;
		input.push_back(Point(x,y));
	}
	double minum = minDifferent(input, 0, input.size()-1, result);
	cout << "nearest point: " << result[0] << " and " 
		 << result[1] << endl;
	cout << "distance: " << minum << endl;
	return 0;
}

POJ 3714 问题:

平面上有两类点,计算属于不同类的顶点对的最小值。

解法:参考http://blog.csdn.net/smsmn/article/details/5963487

算法思想与上面基本相同,但编程方式上进行了改变,更好理解。下面的代码写法上完全按照参考代码的思路,只是将数组操作改为vector,但提交到POJ 3714上却会TLE,看来动态分配空间所占用的时间也不小。所以要想AC,请使用参考代码。

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;

const double INF = 1e100;

struct Point
{
	double x, y;
	int flag;	// 顶点的类别
	Point(){}
	Point(double xx, double yy):x(xx),y(yy){}
};

vector<Point> p;

bool cmp1(const Point& a, const Point& b)
{
	return a.x < b.x;
}

bool cmp2(int a, int b)
{
	return p[a].y < p[b].y;
}


double dist(const Point& a, const Point& b)
{
	double xx = a.x - b.x;
	double yy = a.y - b.y;
	return sqrt(xx*xx+yy*yy);
}

// 输出属于不同类的顶点对的最小值
double min_dist(vector<Point> p, int left, int right)
{
	int mid = (left+right)>>1, i,j;
	if (left>=right) return INF;
	for (i=mid; i>=left && p[mid].x<=p[i].x; i--);
	double minum = min_dist(p, left, i);
	for (i=mid; i<=right && p[i].x<=p[mid].x; i++);
	minum = min(minum, min_dist(p, i, right));
	vector<int> yp;
	for (i=mid; i>=left && p[mid].x-p[i].x<minum; i--)
		yp.push_back(i);
	for (i=mid+1; i<=right && p[i].x-p[mid].x<minum; i++)
		yp.push_back(i);
	// 这个方法非常巧妙,直接对顶点索引进行排序,减少了空间使用,
	// 代码上也更加简洁
	sort(yp.begin(), yp.end(), cmp2);
	for (i=0; i<yp.size(); i++)
		for (j=i+1; j<yp.size() && p[yp[j]].y-p[yp[i]].y<minum; j++)
			// 主要的不同之处,产生最小距离的点对必须属于不同类别
			if (p[yp[j]].flag != p[yp[i]].flag)
				minum = min(minum, dist(p[yp[j]], p[yp[i]]));
	return minum;
}

int main()
{
	int i,j,test;
	cin >> test;
	while (test--)
	{
		int xx,yy,n;
		cin >> n;
		for (i=0; i<n; i++)
		{
			cin >> xx >> yy;
			p.push_back(Point(xx,yy));
			p[i].flag = 1;
		}
		for (; i<2*n; i++)
		{
			cin >> xx >> yy;
			p.push_back(Point(xx,yy));
			p[i].flag = 2;
		}
		// 按照x坐标对点集进行排序
		sort(p.begin(), p.end(), cmp1);
		printf("%.3lf\n", min_dist(p, 0, p.size()-1));
	}
}

    原文作者:linyunzju
    原文地址: https://blog.csdn.net/linyunzju/article/details/7716839
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞