1:
int MaxSum(int *A, int n)
{
int maximum = -INF;
int sum;
for (int i = 0; i < n; i++)
{
sum = 0;
for (int j = i; j < n; j++)
{
sum += A[j];
if (sum > maximum)
{
maximum = sum;
}
}
}
return maximum;
}
2:max{A[0],A[0]+Start[1],All[1]},其中All[1]为(A[1],…,A[n-1])中最大一段数组之和。
int max(int x, int y)
{
return (x > y) ? x : y;
}
int MaxSum(int *A, int n)
{
int nStart = A[n - 1];
int nAll = A[n - 1];
for (int i = n - 2; i >= 0; i--)
{
nStart = max(A[i], nStart + A[i]);
nAll = max(nStart, nAll);
}
return nAll;
}
换一个写法:
int MaxSum(int *A, int n)
{
int nStart = A[n - 1];
int nAll = A[n - 1];
for (int i = n - 2; i >= 0; i--)
{
if (nStart < 0)
{
nStart = 0;
}
nStart += A[i];
if (nStart > nAll)
{
nAll = nStart;
}
}
return nAll;
}
3:动态规划
currSum(j) = max{0, currSum[j-1]} + a[j]
int MaxSubArray(int *a, int n)
{
int currSum = 0;
int maxSum = a[0]; // 数组元素全为负的情况,返回最大值
for (int j = 0; j < n; j++)
{
if (currSum >= 0)
{
currSum += a[j];
}
else
{
currSum = a[j];
}
if (currSum > maxSum)
{
maxSum = currSum;
}
}
return maxSum;
}