前奏
希望此编程艺术系列能给各位带来的是一种方法,一种创造力,一种举一反三的能力。本章依然同第四章一样,选取比较简单的面试题,恭祝各位旅途愉快。同样,有任何问题,欢迎不吝指正。谢谢。
第一节、寻找满足条件的两个数
第14题(数组):
题目:输入一个数组和一个数字,在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是O(n)。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组1、2、4、7、11、15和数字15。由于4+11=15,因此输出4和11。
分析:
咱们试着一步一步解决这个问题(注意阐述中数列有序无序的区别):
- 直接穷举,从数组中任意选取两个数,判定它们的和是否为输入的那个数字。此举复杂度为O(N^2)。很显然,我们要寻找效率更高的解法。
- 题目相当于,对每个a[i],然后查找判断sum-a[i]是否也在原始序列中,每一次要查找的时间都要花费为O(N),这样下来,最终找到两个数还是需要O(N^2)的复杂度。那如何提高查找判断的速度列?对了,二分查找,将原来O(N)的查找时间提高到O(logN),这样对于N个a[i],都要花logN的时间去查找相对应的sum-a[i]是否在原始序列中,总的时间复杂度已降为O(N*logN),且空间复杂度为O(1)。(如果有序,直接二分O(N*logN),如果无序,先排序后二分,复杂度同样为O(N*logN+N*logN)=O(N*logN),空间总为O(1))。
- 有没有更好的办法列?咱们可以依据上述思路2的思想,a[i]在序列中,如果a[i]+a[k]=sum的话,那么sum-a[i](a[k])也必然在序列中,,举个例子,如下:
原始序列:1、 2、 4、 7、11、15 用输入数字15减一下各个数,得到对应的序列为:
对应序列:14、13、11、8、4、 0
第一个数组以一指针i 从数组最左端开始向右扫描,第二个数组以一指针j 从数组最右端开始向左扫描,如果下面出现了和上面一样的数,即a[*i]=a[*j],就找出这俩个数来了。如上,i,j最终在第一个,和第二个序列中找到了相同的数4和11,,所以符合条件的两个数,即为4+11=15。怎么样,两端同时查找,时间复杂度瞬间缩短到了O(N),但却同时需要O(N)的空间存储第二个数组(@飞羽:要达到O(N)的复杂度,第一个数组以一指针i 从数组最左端开始向右扫描,第二个数组以一指针j 从数组最右端开始向左扫描,首先初始i指向元素1,j指向元素0,谁指的元素小,谁先移动,由于1(i)>0(j),所以i不动,j向左移动。然后j移动到元素4发现大于元素1,故而停止移动j,开始移动i,直到i指向4,这时,i指向的元素与j指向的元素相等,故而判断4是满足条件的第一个数;然后同时移动i,j再进行判断,直到它们到达边界)。 - 当然,你还可以构造hash表,正如编程之美上的所述,给定一个数字,根据hash映射查找另一个数字是否也在数组中,只需用O(1)的时间,这样的话,总体的算法通上述思路3 一样,也能降到O(N),但有个缺陷,就是构造hash额外增加了O(N)的空间,此点同上述思路 3。不过,空间换时间,仍不失为在时间要求较严格的情况下的一种好办法。
- 如果数组是无序的,先排序(n*logn),然后用两个指针i,j,各自指向数组的首尾两端,令i=0,j=n-1,然后i++,j–,逐次判断a[i]+a[j]?=sum,如果某一刻a[i]+a[j]>sum,则要想办法让sum的值减小,所以此刻i不动,j–,如果某一刻a[i]+a[j]<sum,则要想办法让sum的值增大,所以此刻i++,j不动。所以,数组无序的时候,时间复杂度最终为O(n*logn+n)=O(n*logn),若原数组是有序的,则不需要事先的排序,直接O(n)搞定,且空间复杂度还是O(1),此思路是相对于上述所有思路的一种改进。(如果有序,直接两个指针两端扫描,时间O(N),如果无序,先排序后两端扫描,时间O(N*logN+N)=O(N*logN),空间始终都为O(1))。(与上述思路2相比,排序后的时间开销由之前的二分的n*logn降到了扫描的O(N))。
总结:
- 不论原序列是有序还是无序,解决这类题有以下三种办法:
1、二分(若无序,先排序后二分),时间复杂度总为O(n*logn),空间复杂度为O(1);
2、扫描一遍X-S[i] 映射到一个数组或构造hash表,时间复杂度为O(n),空间复杂度为O(n);
3、两个指针两端扫描(若无序,先排序后扫描),时间复杂度最后为:有序O(n),无序O(n*logn+n)=O(n*logn),空间复杂度都为O(1)。
- 所以,要想达到时间O(N),空间O(1)的目标,除非原数组是有序的(指针扫描法),不然,当数组无序的话,就只能先排序,后指针扫描法或二分(时间n*logn,空间O(1)),或映射或hash(时间O(n),空间O(n))。时间或空间,必须牺牲一个,自个权衡吧。
- 综上,若是数组有序的情况下,优先考虑两个指针两端扫描法,以达到最佳的时(O(N)),空(O(1))效应。否则,如果要排序的话,时间复杂度最快当然是只能达到N*logN,空间O(1)则是不在话下。
代码:
ok,在进入第二节之前,咱们先来实现思路5(这里假定数组已经是有序的),代码可以如下编写(两段代码实现):
- //代码一
- //O(N)
- Pair findSum(int *s,int n,int x)
- {
- //sort(s,s+n); 如果数组非有序的,那就事先排好序O(N*logN)
- int *begin=s;
- int *end=s+n-1;
- while(begin<end) //俩头夹逼,或称两个指针两端扫描法,很经典的方法,O(N)
- {
- if(*begin+*end>x)
- {
- –end;
- }
- else if(*begin+*end<x)
- {
- ++begin;
- }
- else
- {
- return Pair(*begin,*end);
- }
- }
- return Pair(-1,-1);
- }
- //或者如下编写,
- //代码二
- //copyright@ zhedahht && yansha
- //July、updated,2011.05.14。
- bool find_num(int data[], unsigned int length, int sum, int& first_num, int& second_num)
- {
- if(length < 1)
- return true;
- int begin = 0;
- int end = length – 1;
- while(end > begin)
- {
- long current_sum = data[begin] + data[end];
- if(current_sum == sum)
- {
- first_num = data[begin];
- second_num = data[end];
- return true;
- }
- else if(current_sum > sum)
- end–;
- else
- begin++;
- }
- return false;
- }
扩展:
1、如果在返回找到的两个数的同时,还要求你返回这两个数的位置列?
2、如果把题目中的要你寻找的两个数改为“多个数”,或任意个数列?(请看下面第二节)
3、二分查找时: left <= right,right = middle – 1;left < right,right = middle;
//算法所操作的区间,是左闭右开区间,还是左闭右闭区间,这个区间,需要在循环初始化,
//循环体是否终止的判断中,以及每次修改left,right区间值这三个地方保持一致,否则就可能出错.//二分查找实现一
int search(int array[], int n, int v)
{
int left, right, middle;
left = 0, right = n – 1;while (left <= right)
{
middle = left + (right-left)/2;
if (array[middle] > v)
{
right = middle – 1;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}}
return -1;
}//二分查找实现二
int search(int array[], int n, int v)
{
int left, right, middle;left = 0, right = n;
while (left < right)
{
middle = left + (right-left)/2;if (array[middle] > v)
{
right = middle;
}
else if (array[middle] < v)
{
left = middle + 1;
}
else
{
return middle;
}
}return -1;
}
第二节、寻找满足条件的多个数
第21题(数组)
2010年中兴面试题 编程求解:
输入两个整数 n 和 m,从数列1,2,3…….n 中 随意取几个数,
使其和等于 m ,要求将其中所有的可能组合列出来。
解法一
我想,稍后给出的程序已经足够清楚了,就是要注意到放n,和不放n个区别,即可,代码如下:
- // 21题递归方法#include<iostream>
- #include<list>
using namespace std;
list<int>list1;
void find_factor(int sum, int n)
{
if(n <= 0 || sum <= 0) // 递归出口
return;
// 输出找到的结果
if(sum == n)
{
// 反转list
list1.reverse();
for(list<int>::iterator iter = list1.begin(); iter != list1.end(); iter++)
cout << *iter << ” + “;
cout << n << endl;
list1.reverse();
}
list1.push_front(n); //典型的01背包问题
find_factor(sum-n, n-1); //放n,n-1个数填满sum-n
list1.pop_front();
find_factor(sum, n-1); //不放n,n-1个数填满sum
}
int main()
{
int sum, n;
cout << “请输入你要从[1…n]数列中取值的n和sum:” << endl;
cin >> n>>sum;
cout << “所有可能的结果如下:” << endl;
find_factor(sum,n);
return 0;
}
解法二
@zhouzhenren:
这个问题属于子集和问题(也是背包问题)。本程序采用 回溯法+剪枝
X数组是解向量,t=∑(1,..,k-1)Wi*Xi, r=∑(k,..,n)Wi
若t+Wk+W(k+1)<=M,则Xk=true,递归左儿子(X1,X2,..,X(k-1),1);否则剪枝;
若t+r-Wk>=M && t+W(k+1)<=M,则置Xk=0,递归右儿子(X1,X2,..,X(k-1),0);否则剪枝;
本题中W数组就是(1,2,..,n),所以直接用k代替WK值。
代码编写如下:
- //copyright@ 2011 zhouzhenren
- //输入两个整数 n 和 m,从数列1,2,3…….n 中 随意取几个数,
- //使其和等于 m ,要求将其中所有的可能组合列出来。
- #include <stdio.h>
- #include <stdlib.h>
- #include <memory.h>
- /**
- * 输入t, r, 尝试Wk
- */
- void sumofsub(int t, int k ,int r, int& M, bool& flag, bool* X)
- {
- X[k] = true; // 选第k个数
- if (t + k == M) // 若找到一个和为M,则设置解向量的标志位,输出解
- {
- flag = true;
- for (int i = 1; i <= k; ++i)
- {
- if (X[i] == 1)
- {
- printf(“%d “, i);
- }
- }
- printf(“/n”);
- }
- else
- { // 若第k+1个数满足条件,则递归左子树
- if (t + k + (k+1) <= M)
- {
- sumofsub(t + k, k + 1, r – k, M, flag, X);
- }
- // 若不选第k个数,选第k+1个数满足条件,则递归右子树
- if ((t + r – k >= M) && (t + (k+1) <= M))
- {
- X[k] = false;
- sumofsub(t, k + 1, r – k, M, flag, X);
- }
- }
- }
- void search(int& N, int& M)
- {
- // 初始化解空间
- bool* X = (bool*)malloc(sizeof(bool) * (N+1));
- memset(X, false, sizeof(bool) * (N+1));
- int sum = (N + 1) * N * 0.5f;
- if (1 > M || sum < M) // 预先排除无解情况
- {
- printf(“not found/n”);
- return;
- }
- bool f = false;
- sumofsub(0, 1, sum, M, f, X);
- if (!f)
- {
- printf(“not found/n”);
- }
- free(X);
- }
- int main()
- {
- int N, M;
- printf(“请输入整数N和M/n”);
- scanf(“%d%d”, &N, &M);
- search(N, M);
- return 0;
- }
扩展:
1、从一列数中筛除尽可能少的数使得从左往右看,这些数是从小到大再从大到小的(网易)。
2、有两个序列a,b,大小都为n,序列元素的值任意整数,无序;
要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
例如:
var a=[100,99,98,1,2, 3];
var b=[1, 2, 3, 4,5,40];(微软100题第32题)。
@well:[fairywell]:
给出扩展问题 1 的一个解法:
1、从一列数中筛除尽可能少的数使得从左往右看,这些数是从小到大再从大到小的(网易)。
双端 LIS 问题,用 DP 的思想可解,目标规划函数 max{ b[i] + c[i] – 1 }, 其中 b[i] 为从左到右, 0 ~ i 个数之间满足递增的数字个数; c[i] 为从右到左, n-1 ~ i 个数之间满足递增的数字个数。最后结果为 n – max + 1。其中 DP 的时候,可以维护一个 inc[] 数组表示递增数字序列,inc[i] 为从小到大第 i 大的数字,然后在计算 b[i] c[i] 的时候使用二分查找在 inc[] 中找出区间 inc[0] ~ inc[i-1] 中小于 a[i] 的元素个数(low)。
源代码如下:
- /**
- * The problem:
- * 从一列数中筛除尽可能少的数使得从左往右看,这些数是从小到大再从大到小的(网易)。
- * use binary search, perhaps you should compile it with -std=c99
- * fairywell 2011
- */
- #include <stdio.h>
- #define MAX_NUM (1U<<31)
- int
- main()
- {
- int i, n, low, high, mid, max;
- printf(“Input how many numbers there are: “);
- scanf(“%d/n”, &n);
- /* a[] holds the numbers, b[i] holds the number of increasing numbers
- * from a[0] to a[i], c[i] holds the number of increasing numbers
- * from a[n-1] to a[i]
- * inc[] holds the increasing numbers
- * VLA needs c99 features, compile with -stc=c99
- */
- double a[n], b[n], c[n], inc[n];
- printf(“Please input the numbers:/n”);
- for (i = 0; i < n; ++i) scanf(“%lf”, &a[i]);
- // update array b from left to right
- for (i = 0; i < n; ++i) inc[i] = (unsigned) MAX_NUM;
- //b[0] = 0;
- for (i = 0; i < n; ++i) {
- low = 0; high = i;
- while (low < high) {
- mid = low + (high-low)*0.5;
- if (inc[mid] < a[i]) low = mid + 1;
- else high = mid;
- }
- b[i] = low + 1;
- inc[low] = a[i];
- }
- // update array c from right to left
- for (i = 0; i < n; ++i) inc[i] = (unsigned) MAX_NUM;
- //c[0] = 0;
- for (i = n-1; i >= 0; –i) {
- low = 0; high = i;
- while (low < high) {
- mid = low + (high-low)*0.5;
- if (inc[mid] < a[i]) low = mid + 1;
- else high = mid;
- }
- c[i] = low + 1;
- inc[low] = a[i];
- }
- max = 0;
- for (i = 0; i < n; ++i )
- if (b[i]+c[i] > max) max = b[i] + c[i];
- printf(“%d number(s) should be erased at least./n”, n+1-max);
- return 0;
- }
@yansha:fairywell的程序很赞,时间复杂度O(nlogn),这也是我能想到的时间复杂度最优值了。不知能不能达到O(n)。
扩展题第2题
当前数组a和数组b的和之差为
A = sum(a) – sum(b)a的第i个元素和b的第j个元素交换后,a和b的和之差为
A’ = sum(a) – a[i] + b[j] – (sum(b) – b[j] + a[i])
= sum(a) – sum(b) – 2 (a[i] – b[j])
= A – 2 (a[i] – b[j])设x = a[i] – b[j],得
|A| – |A’| = |A| – |A-2x|假设A > 0,
当x 在 (0,A)之间时,做这样的交换才能使得交换后的a和b的和之差变小,x越接近A/2效果越好,
如果找不到在(0,A)之间的x,则当前的a和b就是答案。所以算法大概如下:
在a和b中寻找使得x在(0,A)之间并且最接近A/2的i和j,交换相应的i和j元素,重新计算A后,重复前面的步骤直至找不到(0,A)之间的x为止。接上,@yuan:
a[i]-b[j]要接近A/2,则可以这样想,
我们可以对于a数组的任意一个a[k],在数组b中找出与a[k]-C最接近的数(C就是常数,也就是0.5*A)
这个数要么就是a[k]-C,要么就是比他稍大,要么比他稍小,所以可以要二分查找。查找最后一个小于等于a[k]-C的数和第一个大于等于a[k]-C的数,
然后看哪一个与a[k]-C更加接近,所以T(n) = nlogn。
本章完。
http://blog.csdn.net/v_JULY_v/article/details/6419466