Swift 中实现 Promise 模式

在异步编程中,除了竟态处理、资源利用以外,另外一个难点就是流程管理。在拥有匿名函数、闭包这些特性的编程语言中,我们通常可以使用回调函数来做一个异步任务完成或失败时的处理。但当我们的业务逻辑逐渐复杂时,就会产生回调嵌套,整个事件流将十分混乱。相信大家对 Node.js 的回调陷阱一定有所耳闻了。于是各种各样事件流处理的库就产生了,比如 NPM.js 社区中著名的 qbluebird 都是用来解决回调陷阱的,它们所采用的模式就是我们所说的 Promise,也是我们今天要谈的模式。当然异步流程处理的方式远不止 Promise 这一种,在支持生成器语义的语言里我们还能用 yield + generator 来实现协程,co就是这种思想。但是 Swift 并不支持,所以我们就不讨论了。

Getting Started

相信大家在日常开发中对下面这种模式已经不陌生了:

dispatch_async(dispatch_get_global_queue(QOS_CLASS_USER_INITIATED, 0)) { 
    // Do something in background.
    dispatch_async(dispatch_get_main_queue()) {
        // Update the UI.
    }
}

类似用法的还有诸如权限认证NSURLSession,都有这样的回调,如果逻辑稍微复杂一些就会出现回调陷阱。下面我们应用 Promise 来将它们平坦化,通过连接就可以实现链式的事件响应。

我们先看看用了 Promise 后是一番怎样的景象:

doSomething()
    .then( doAnotherThing )
    .then( doSomethingElse )
    .success( someHandler )

是不是瞬间清晰了很多?我们来分析一下如何实现。
首先,doSomething() 会返回一个 Promise 对象,Promise 对象在构造函数中接受一个函数作为参数,这个函数就是用来启动异步任务的。而这个函数又有两个参数,分别是成功时的回调和失败时的回调。

我们下面就来实现这个 Promise 类:

class Promise
    
      { typealias ResolveCallback = (T) -> Void typealias RejectCallback = (ErrorType) -> Void typealias AsyncTask = (ResolveCallback, RejectCallback) -> Void let task: AsyncTask var resolveCallback: ResolveCallback? var rejectCallback: RejectCallback? init(_ task: AsyncTask) { self.task = task } }
    

通过泛型表示异步任务最终得到的结果的类型,对于失败的情况,传递一个实现 ErrorType 协议的对象作为错误的原因。

下面我们看如何响应结果并启动任务:

    ...

    func success(callback: ResolveCallback) {
        self.resolveCallback = callback
        self.task({ self.resolve($0) }, { self.reject($0) })
    }

    func failed(callback: RejectCallback) {
        self.rejectCallback = callback
    }

    ...

我这里采用了冷启动的方式,也就是说仅当有响应函数被挂载时才启动异步任务,如果你想在 Promise 一被创建时就启动异步任务(也就是热启动),就需要用一个属性来存放任务的结果,以免响应函数还没被挂载,这个异步任务就完成了,这样这个结果就丢失了。

异步任务启动的方式是将 resolvereject 作为参数传给异步任务启动函数,当异步任务自身的回调调用时,这个 Promise 对象就能做出响应处理,将这个事件传递给它的响应函数。

当然,resolvereject函数也很简单,就是执行回调:

    private func resolve(result: T) {
        self.resolveCallback?(result)
    }

    private func reject(error: ErrorType) {
        self.rejectCallback?(error)
    }

链式调用

到现在我们并没有实现 Promise 的精髓,还不能链式调用。所谓的链式调用就是当一个 Promise 完成时,立即用一个变换函数将结果传给下一个 Promise 去执行,以此类推,这样我们构造一串操作之后再一并启动,实现上面我说到的冷启动。

那么这个核心函数就是 then,这个函数接受一个变换函数作为参数,这个变换函数接受 Promise 结果然后构造出一个新的 Promise 对象,然后返回。由于 then 返回的也是 Promise 因此我们可以用链式语法不断连接多个操作,十分方便。

那么连接后的启动顺序回事怎样的呢?举个例子:

promise1.then(genPromise2).then(genPromise3).success(...)

那么最终得到的 Promise 对象就是这样的:

promise3( promise2( promise1 ) )

最后一个 then 连接的 Promise 对象包裹了上一个对象,以此类推,那么在启动时,当然也是最后一个对象被启动,只不过由于这个 Promise 对象是被封装过的,所以它会先触发上一个对象,待拿到结果后再传递给自己执行,仍然以此类推,就能保证执行顺序是正确的。

说的很抽象,直接看代码吧:

    func then(f: (T) -> Promise) -> Promise { return Promise { (resolve, reject) in self.task( { (result) in let wrapped = f(result) wrapped.success { resolve($0) } }, { (error) in reject(error) }) } }

可以看到我们在两个 Promise 对象之间又封装了一个 Promise 对象,作为协调者,它会先执行之前的异步任务,然后再传给下一个任务,那么这个函数就会返回封装后的 Promise 对象。

下面是完整的代码:

class Promise
    
      { typealias ResolveCallback = (T) -> Void typealias RejectCallback = (ErrorType) -> Void typealias AsyncTask = (ResolveCallback, RejectCallback) -> Void let task: AsyncTask var resolveCallback: ResolveCallback? var rejectCallback: RejectCallback? init(_ task: AsyncTask) { self.task = task } private func resolve(result: T) { self.resolveCallback?(result) } private func reject(error: ErrorType) { self.rejectCallback?(error) } func success(callback: ResolveCallback) { self.resolveCallback = callback self.task({ self.resolve($0) }, { self.reject($0) }) } func failed(callback: RejectCallback) { self.rejectCallback = callback } func then
     (f: (T) -> Promise) -> Promise { return Promise { (resolve, reject) in self.task( { (result) in let wrapped = f(result) wrapped.success { resolve($0) } }, { (error) in reject(error) }) } } }
    

使用示例

下面我们试试怎么使用这个 Promise 对象,我首先定义三个操作:

func delay(secs: UInt64) -> Promise
    
      { return Promise
     
       { (resolve, _) in let time = dispatch_time(DISPATCH_TIME_NOW, Int64(NSEC_PER_SEC * secs)) dispatch_after(time, dispatch_get_main_queue()) { resolve() } } } func fetch(URL URL: NSURL) -> Promise
      
        { return Promise
       
         { (resolve, reject) in let task = NSURLSession.sharedSession().dataTaskWithURL(URL) { (data, response, error) in if (error != nil) { reject(error!) } else { resolve(data) } } task.resume() } } func decodeToString(data: NSData?) -> Promise
        
          { return Promise
         
           { (resolve, _) in if (data == nil) { resolve("") } else { resolve(String(data: data!, encoding: NSUTF8StringEncoding) ?? "") } } }
         
        
       
      
     
    

这些操作里有异步操作,也有同步操作,但都能适应 Promise 模式,每个函数都返回一个 Promise 对象。

然后我们构造一个链式操作:

delay(5)
    .then { () -> Promise
    
      in fetch(URL: NSURL(string: "https://www.zhihu.com")!) } .then { (data) -> Promise
     
       in decodeToString(data) } .success { (result) in print(result) } XCPlaygroundPage.currentPage.needsIndefiniteExecution = true
     
    

注意:我这个例子是在 Playground 里做的,所以为了让异步任务能够执行,我们需要设置一个属性,以免 Playground 在主线程完毕后结束程序。

结果符合我们的预期,在 5 秒的延时之后,网络请求被执行,然后转码,最终打印出来。

总结

事实上,Promise 模式被利用得最好的应该是 JavaScript,我们只不过在其他语言中借鉴这种做法,然后给出响应的实现罢了。当然本文只是简单剖析 Promise 的内部原理,很多细节可能没有太完善,如果你喜欢这种编程方式,可以尝试一下成熟的 PromiseKit,它有 Objective-C 和 Swift 的实现。
当然你也可以尝试一下具有类似思想的反应式函数式编程框架,比如 ReactiveX

    原文作者:算法小白
    原文地址: https://juejin.im/entry/576bc3a90a2b58006afba6be
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞