译者说
Tornado 4.3
于2015年11月6日发布,该版本正式支持Python3.5
的async
/await
关键字,并且用旧版本CPython编译Tornado同样可以使用这两个关键字,这无疑是一种进步。其次,这是最后一个支持Python2.6
和Python3.2
的版本了,在后续的版本了会移除对它们的兼容。现在网络上还没有Tornado4.3
的中文文档,所以为了让更多的朋友能接触并学习到它,我开始了这个翻译项目,希望感兴趣的小伙伴可以一起参与翻译,项目地址是tornado-zh on Github,翻译好的文档在Read the Docs上直接可以看到。欢迎Issues or PR。
协程
Tornado中推荐使用协程写异步代码. 协程使用了Python的yield
关键字代替链式回调来将程序挂起和恢复执行(像在 gevent中出现的轻量级线程合作方式有时也被称为协程,但是在Tornado中所有的协程使用明确的上下文切换,并被称为异步函数).
使用协程几乎像写同步代码一样简单, 并且不需要浪费额外的线程. 它们还通过减少上下文切换来 使并发编程更简单.
例子:
from tornado import gen
@gen.coroutine
def fetch_coroutine(url):
http_client = AsyncHTTPClient()
response = yield http_client.fetch(url)
# 在Python 3.3之前, 在generator中是不允许有返回值的
# 必须通过抛出异常来代替.
# 就像 raise gen.Return(response.body).
return response.body
Python 3.5:async
和await
Python 3.5引入了async
和await
关键字(使用这些关键字的函数也被称为”原生协程”).从Tornado 4.3,你可以用它们代替yield
为基础的协程.只需要简单的使用async def foo()
在函数定义的时候代替@gen.coroutine
装饰器,用await
代替yield. 本文档的其他部分会继续使用yield
的风格来和旧版本的Python兼容, 但是如果async
和await
可用的话,它们运行起来会更快:
async def fetch_coroutine(url):
http_client = AsyncHTTPClient()
response = await http_client.fetch(url)
return response.body
await
关键字比yield
关键字功能要少一些.例如,在一个使用 yield
的协程中,你可以得到Futures
列表, 但是在原生协程中,你必须把列表用 tornado.gen.multi
包起来. 你也可以使用 tornado.gen.convert_yielded
来把任何使用yield
工作的代码转换成使用await
的形式.
虽然原生协程没有明显依赖于特定框架(例如它们没有使用装饰器,例如tornado.gen.coroutine
或asyncio.coroutine
), 不是所有的协程都和其他的兼容. 有一个coroutine runner在第一个协程被调用的时候进行选择, 然后被所有用await
直接调用的协程共享. Tornado的协程执行者(coroutine runner)在设计上是多用途的,可以接受任何来自其他框架的awaitable对象;其他的协程运行时可能有很多限制(例如,asyncio
协程执行者不接受来自其他框架的协程).基于这些原因,我们推荐组合了多个框架的应用都使用Tornado的协程执行者来进行协程调度.为了能使用Tornado来调度执行asyncio的协程, 可以使用tornado.platform.asyncio.to_asyncio_future
适配器.
它是如何工作的
包含了yield
关键字的函数是一个生成器(generator).所有的生成器都是异步的;当调用它们的时候,会返回一个生成器对象,而不是一个执行完的结果.@gen.coroutine
装饰器通过yield
表达式和生成器进行交流, 而且通过返回一个.Future
与协程的调用方进行交互.
下面是一个协程装饰器内部循环的简单版本:
# tornado.gen.Runner 简化的内部循环
def run(self):
# send(x) makes the current yield return x.
# It returns when the next yield is reached
future = self.gen.send(self.next)
def callback(f):
self.next = f.result()
self.run()
future.add_done_callback(callback)
装饰器从生成器接收一个Future
对象, 等待(非阻塞的)这个Future
对象执行完成, 然后”解开(unwraps)”这个Future
对象,并把结果作为yield
表达式的结果传回给生成器.大多数异步代码从来不会直接接触Future
类.除非 Future
立即通过异步函数返回给yield
表达式.
如何调用协程
协程一般不会抛出异常: 它们抛出的任何异常将被.Future
捕获直到它被得到.这意味着用正确的方式调用协程是重要的, 否则你可能有被忽略的错误:
@gen.coroutine
def divide(x, y):
return x / y
def bad_call():
# 这里应该抛出一个 ZeroDivisionError 的异常, 但事实上并没有
# 因为协程的调用方式是错误的.
divide(1, 0)
几乎所有的情况下, 任何一个调用协程的函数都必须是协程它自身, 并且在调用的时候使用yield
关键字. 当你复写超类中的方法, 请参阅文档,看看协程是否支持(文档应该会写该方法”可能是一个协程”或者”可能返回一个 Future
类 “):
@gen.coroutine
def good_call():
# yield 将会解开 divide() 返回的 Future 并且抛出异常
yield divide(1, 0)
有时你可能想要对一个协程”一劳永逸”而且不等待它的结果. 在这种情况下,建议使用.IOLoop.spawn_callback
, 它使得.IOLoop
负责调用. 如果它失败了, .IOLoop
会在日志中把调用栈记录下来:
# IOLoop 将会捕获异常,并且在日志中打印栈记录.
# 注意这不像是一个正常的调用, 因为我们是通过
# IOLoop 调用的这个函数.
IOLoop.current().spawn_callback(divide, 1, 0)
最后, 在程序顶层, 如果.IOLoop
尚未运行, 你可以启动.IOLoop
,执行协程,然后使用.IOLoop.run_sync
方法停止.IOLoop
. 这通常被用来启动面向批处理程序的main
函数:
# run_sync() 不接收参数,所以我们必须把调用包在lambda函数中.
IOLoop.current().run_sync(lambda: divide(1, 0))
协程模式
结合 callback
为了使用回调代替.Future
与异步代码进行交互, 把调用包在.Task
类中. 这将为你添加一个回调参数并且返回一个可以yield的.Future
:
@gen.coroutine
def call_task():
# 注意这里没有传进来some_function.
# 这里会被Task翻译成
# some_function(other_args, callback=callback)
yield gen.Task(some_function, other_args)
调用阻塞函数
从协程调用阻塞函数最简单的方式是使用concurrent.futures.ThreadPoolExecutor
, 它将返回和协程兼容的Futures
:
thread_pool = ThreadPoolExecutor(4)
@gen.coroutine
def call_blocking():
yield thread_pool.submit(blocking_func, args)
并行
协程装饰器能识别列表或者字典对象中各自的 Futures
, 并且并行的等待这些 Futures
:
@gen.coroutine
def parallel_fetch(url1, url2):
resp1, resp2 = yield [http_client.fetch(url1),
http_client.fetch(url2)]
@gen.coroutine
def parallel_fetch_many(urls):
responses = yield [http_client.fetch(url) for url in urls]
# 响应是和HTTPResponses相同顺序的列表
@gen.coroutine
def parallel_fetch_dict(urls):
responses = yield {url: http_client.fetch(url)
for url in urls}
# 响应是一个字典 {url: HTTPResponse}
交叉存取
有时候保存一个 .Future
比立即yield它更有用, 所以你可以在等待之前
执行其他操作:
@gen.coroutine
def get(self):
fetch_future = self.fetch_next_chunk()
while True:
chunk = yield fetch_future
if chunk is None: break
self.write(chunk)
fetch_future = self.fetch_next_chunk()
yield self.flush()
循环
协程的循环是棘手的, 因为在Python中没有办法在for
循环或者while
循环yield
迭代器,并且捕获yield的结果. 相反,你需要将循环条件从访问结果中分离出来, 下面是一个使用Motor的例子:
import motor
db = motor.MotorClient().test
@gen.coroutine
def loop_example(collection):
cursor = db.collection.find()
while (yield cursor.fetch_next):
doc = cursor.next_object()
在后台运行
PeriodicCallback
通常不使用协程. 相反,一个协程可以包含一个while True:
循环并使用tornado.gen.sleep
:
@gen.coroutine
def minute_loop():
while True:
yield do_something()
yield gen.sleep(60)
# Coroutines that loop forever are generally started with
# spawn_callback().
IOLoop.current().spawn_callback(minute_loop)
有时可能会遇到一个更复杂的循环. 例如, 上一个循环运行每次花费60+N
秒,其中N
是do_something()
花费的时间. 为了准确的每60秒运行,使用上面的交叉模式:
@gen.coroutine
def minute_loop2():
while True:
nxt = gen.sleep(60) # 开始计时.
yield do_something() # 计时后运行.
yield nxt # 等待计时结束.