本文节选自《Netkiller Java 手札》
作者:netkiller 他的网站: http://www.netkiller.cn, QQ: 13721218
5.29. Spring boot with Apache Hive
5.29.1. Maven
<dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-jdbc</artifactId> </dependency> <dependency> <groupId>org.springframework.data</groupId> <artifactId>spring-data-hadoop</artifactId> <version>2.5.0.RELEASE</version> </dependency> <!-- https://mvnrepository.com/artifact/org.apache.hive/hive-jdbc --> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-jdbc</artifactId> <version>2.3.0</version> <exclusions> <exclusion> <groupId>org.eclipse.jetty.aggregate</groupId> <artifactId>*</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>org.apache.tomcat</groupId> <artifactId>tomcat-jdbc</artifactId> <version>8.5.20</version> </dependency>
5.29.2. application.properties
hive 数据源配置项
hive.url=jdbc:hive2://172.16.0.10:10000/default hive.driver-class-name=org.apache.hive.jdbc.HiveDriver hive.username=hadoop hive.password=
用户名是需要具有 hdfs 写入权限,密码可以不用写
如果使用 yaml 格式 application.yml 配置如下
hive: url: jdbc:hive2://172.16.0.10:10000/default driver-class-name: org.apache.hive.jdbc.HiveDriver type: com.alibaba.druid.pool.DruidDataSource username: hive password: hive
5.29.3. Configuration
package cn.netkiller.config; import org.apache.tomcat.jdbc.pool.DataSource; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.core.env.Environment; import org.springframework.jdbc.core.JdbcTemplate; @Configuration public class HiveConfig { private static final Logger logger = LoggerFactory.getLogger(HiveConfig.class); @Autowired private Environment env; @Bean(name = "hiveJdbcDataSource") @Qualifier("hiveJdbcDataSource") public DataSource dataSource() { DataSource dataSource = new DataSource(); dataSource.setUrl(env.getProperty("hive.url")); dataSource.setDriverClassName(env.getProperty("hive.driver-class-name")); dataSource.setUsername(env.getProperty("hive.username")); dataSource.setPassword(env.getProperty("hive.password")); logger.debug("Hive DataSource"); return dataSource; } @Bean(name = "hiveJdbcTemplate") public JdbcTemplate hiveJdbcTemplate(@Qualifier("hiveJdbcDataSource") DataSource dataSource) { return new JdbcTemplate(dataSource); } }
你也可以使用 DruidDataSource
package cn.netkiller.api.config; @Configuration public class HiveDataSource { @Autowired private Environment env; @Bean(name = "hiveJdbcDataSource") @Qualifier("hiveJdbcDataSource") public DataSource dataSource() { DruidDataSource dataSource = new DruidDataSource(); dataSource.setUrl(env.getProperty("hive.url")); dataSource.setDriverClassName(env.getProperty("hive.driver-class-name")); dataSource.setUsername(env.getProperty("hive.username")); dataSource.setPassword(env.getProperty("hive.password")); return dataSource; } @Bean(name = "hiveJdbcTemplate") public JdbcTemplate hiveJdbcTemplate(@Qualifier("hiveJdbcDataSource") DataSource dataSource) { return new JdbcTemplate(dataSource); } }
5.29.4. CURD 操作实例
Hive 数据库的增删插改操作与其他数据库没有什么不同。
package cn.netkiller.web; import java.util.Iterator; import java.util.List; import java.util.Map; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Qualifier; import org.springframework.jdbc.core.JdbcTemplate; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.servlet.ModelAndView; @Controller @RequestMapping("/hive") public class HiveController { private static final Logger logger = LoggerFactory.getLogger(HiveController.class); @Autowired @Qualifier("hiveJdbcTemplate") private JdbcTemplate hiveJdbcTemplate; @RequestMapping("/create") public ModelAndView create() { StringBuffer sql = new StringBuffer("create table IF NOT EXISTS "); sql.append("HIVE_TEST"); sql.append("(KEY INT, VALUE STRING)"); sql.append("PARTITIONED BY (CTIME DATE)"); // 分区存储 sql.append("ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' LINES TERMINATED BY '\n' "); // 定义分隔符 sql.append("STORED AS TEXTFILE"); // 作为文本存储 // drop table // StringBuffer sql = new StringBuffer("DROP TABLE IF EXISTS "); // sql.append("HIVE_TEST1"); logger.info(sql.toString()); hiveJdbcTemplate.execute(sql.toString()); return new ModelAndView("index"); } @RequestMapping("/insert") public String insert() { hiveJdbcTemplate.execute("insert into hive_test(key, value) values('Neo','Chen')"); return "Done"; } @RequestMapping("/select") public String select() { String sql = "select * from HIVE_TEST"; List<Map<String, Object>> rows = hiveJdbcTemplate.queryForList(sql); Iterator<Map<String, Object>> it = rows.iterator(); while (it.hasNext()) { Map<String, Object> row = it.next(); System.out.println(String.format("%s\t%s", row.get("key"), row.get("value"))); } return "Done"; } @RequestMapping("/delete") public String delete() { StringBuffer sql = new StringBuffer("DROP TABLE IF EXISTS "); sql.append("HIVE_TEST"); logger.info(sql.toString()); hiveJdbcTemplate.execute(sql.toString()); return "Done"; } }