BZOJ 1877: [SDOI2009]晨跑 费用流

1877: [SDOI2009]晨跑

Time Limit: 1 Sec  

Memory Limit: 256 MB

题目连接

http://www.lydsy.com/JudgeOnline/problem.php?id=1877

Description

Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。

Input

第一行:两个数N,M。表示十字路口数和街道数。 接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。

Output

两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。

Sample Input

7 10

1 2 1

1 3 1

2 4 1

3 4 1

4 5 1

4 6 1

2 5 5

3 6 6

5 7 1

6 7 1

Sample Output

2 11

HINT

 对于30%的数据,N ≤ 20,M ≤ 120。
对于100%的数据,N ≤ 200,M ≤ 20000。

题意

 

题解:

网络流,费用流

因为得保证每条边只能经过一次,那么我们得拆点

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200500
#define mod 1001
#define eps 1e-9
#define pi 3.1415926
int Num;
//const int inf=0x7fffffff;
const ll inf=999999999;
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
//*************************************************************************************
const int MAXN = 1000;
const int MAXM = 50000;
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to, next, cap, flow, cost;
    int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
char map[MAXN][MAXN];
void init()
{
    N = MAXN;
    tol = 0;
    memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int cap, int cost)//左端点,右端点,容量,花费
{
    edge[tol]. to = v;
    edge[tol]. cap = cap;
    edge[tol]. cost = cost;
    edge[tol]. flow = 0;
    edge[tol]. next = head[u];
    head[u] = tol++;
    edge[tol]. to = u;
    edge[tol]. cap = 0;
    edge[tol]. cost = -cost;
    edge[tol]. flow = 0;
    edge[tol]. next = head[v];
    head[v] = tol++;
}
bool spfa(int s, int t)
{
    queue<int>q;
    for(int i = 0; i < N; i++)
    {
        dis[i] = INF;
        vis[i] = false;
        pre[i] = -1;
    }
    dis[s] = 0;
    vis[s] = true;
    q.push(s);
    while(!q.empty())
    {
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int i = head[u]; i != -1; i = edge[i]. next)
        {
            int v = edge[i]. to;
            if(edge[i]. cap > edge[i]. flow &&
                    dis[v] > dis[u] + edge[i]. cost )
            {
                dis[v] = dis[u] + edge[i]. cost;
                pre[v] = i;
                if(!vis[v])
                {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t] == -1) return false;
    else return true;
}
//返回的是最大流, cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost)
{
    int flow = 0;
    cost = 0;
    while(spfa(s,t))
    {
        int Min = INF;
        for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
        {
            if(Min > edge[i]. cap - edge[i]. flow)
                Min = edge[i]. cap - edge[i]. flow;
        }
        for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
        {
            edge[i]. flow += Min;
            edge[i^1]. flow -= Min;
            cost += edge[i]. cost * Min;
        }
        flow += Min;
    }
    return flow;
}
int main()
{
    init();
    int n=read(),m=read();
    addedge(1,1+n,inf,0);
    addedge(n,n*2,inf,0);
    for(int i=0;i<m;i++)
    {
        int x=read(),y=read(),z=read();
        addedge(x+n,y,1,z);
    }
    for(int i=2;i<n;i++)
        addedge(i,i+n,1,0);
    int ans1 = 0,ans2 = 0;
    ans1 = minCostMaxflow(1,2*n,ans2);
    printf("%d %d\n",ans1,ans2);
}

 

    原文作者:qscqesze
    原文地址: https://www.cnblogs.com/qscqesze/p/4795975.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞