数据库索引为什么要用 B+ 树而不用红黑树呢?

AVL 树和红黑树这些二叉树结构的数据结构可以达到最高的查询效率这是毋庸置疑的。

既然如此,那么数据库索引为什么不用 AVL 树或者红黑树呢?

这就牵扯到一个问题了,不考虑每种数据结构的前提条件而选择数据结构都是在耍流氓。

AVL 数和红黑树基本都是存储在内存中才会使用的数据结构,那磁盘中会有什么不同呢?

这就要牵扯到磁盘的存储原理了

操作系统读写磁盘的基本单位是扇区,而文件系统的基本单位是簇(Cluster)。

也就是说,磁盘读写有一个最少内容的限制,即使我们只需要这个簇上的一个字节的内容,我们也要含着泪把一整个簇上的内容读完。

那么,现在问题就来了

一个父节点只有 2 个子节点,并不能填满一个簇上的所有内容啊?那多余的内容岂不是要浪费了?我们怎么才能把浪费的这部分内容利用起来呢?哈哈,答案就是 B+ 树。

由于 B+ 树分支比二叉树更多,所以相同数量的内容,B+ 树的深度更浅,深度代表什么?代表磁盘 io 次数啊!数据库设计的时候 B+ 树有多少个分支都是按照磁盘一个簇上最多能放多少节点设计的啊!

所以,涉及到磁盘上查询的数据结构,一般都用 B+ 树啦。

 



    原文作者:算法小白
    原文地址: https://blog.csdn.net/buyulian/article/details/77996253
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞