352. 数据流的不相交区间
给定一个数据流,输入一组非负整数a1, a2, …, an, …, 对截止到当前的不相交区间进行汇总。
思路:
利用TreeSet数据结构,将不相交区间Interval存储在TreeSet中。TreeSet底层使用红黑树实现,可以用log(n)的代价实现元素查找。每次执行addNum操作时,利用TreeSet找出插入元素val的左近邻元素floor(start值不大于val的最大Interval),以及右近邻元素higher(start值严格大于val的最小Interval),然后根据floor, val, higher之间的关系决定是否对三者进行合并。
/** * Definition for an interval. * public class Interval { * int start; * int end; * Interval() { start = 0; end = 0; } * Interval(int s, int e) { start = s; end = e; } * } */
public class SummaryRanges {
/** Initialize your data structure here. */
private TreeSet<Interval> intervalSet;
public SummaryRanges() {
intervalSet = new TreeSet<Interval>(new Comparator<Interval>() {
public int compare(Interval a, Interval b) {
return a.start - b.start;
}
});
}
public void addNum(int val) {
Interval valInterval = new Interval(val, val);
Interval floor = intervalSet.floor(valInterval);
if (floor != null) {
if (floor.end >= val) {
return;
} else if (floor.end + 1 == val) {
valInterval.start = floor.start;
intervalSet.remove(floor);
}
}
Interval higher = intervalSet.higher(valInterval);
if (higher != null && higher.start == val + 1) {
valInterval.end = higher.end;
intervalSet.remove(higher);
}
intervalSet.add(valInterval);
}
public List<Interval> getIntervals() {
return Arrays.asList(intervalSet.toArray(new Interval[0]));
}
}
/** * Your SummaryRanges object will be instantiated and called as such: * SummaryRanges obj = new SummaryRanges(); * obj.addNum(val); * List<Interval> param_2 = obj.getIntervals(); */