Android中通过引用计数来实现智能指针,并且实现有强指针与弱指针。由对象本身来提供引用计数器,但是对象不会去维护引用计数器的值,而是由智能指针来管理。
要达到所有对象都可用引用计数器实现智能指针管理的目标,可以定义一个公共类,提供引用计数的方法,所有对象都去继承这个公共类,这样就可以实现所有对象都可以用引用计数来管理的目标,在Android中,这个公共类就是RefBase,同时还有一个简单版本LightRefBase。
RefBase作为公共基类提供了引用计数的方法,但是并不去维护引用计数的值,而是由两个智能指针来进行管理:sp(Strong Pointer)和wp(Weak Pointer),代表强引用计数和弱引用计数。 本篇博客我们就一起来学习RefBase,sp(Strong Pointer)和wp(Weak Pointer)。
轻量级引用计数的实现:LightRefBase
LightRefBase的实现很简单,只是内部保存了一个变量用于保存对象被引用的次数,并提供了两个函数用于增加或减少引用计数。
template <class T>
class LightRefBase
{
public:
inline LightRefBase() : mCount(0) { }
inline void incStrong(const void* id) const {
android_atomic_inc(&mCount);
}
inline void decStrong(const void* id) const {
if (android_atomic_dec(&mCount) == 1) {
delete static_cast<const T*>(this);
}
}
//! DEBUGGING ONLY: Get current strong ref count.
inline int32_t getStrongCount() const {
return mCount;
}
typedef LightRefBase<T> basetype;
protected:
inline ~LightRefBase() { }
private:
mutable volatile int32_t mCount;
};
sp(Strong Pointer)
LightRefBase仅仅提供了引用计数的方法,具体引用数应该怎么管理,就要通过智能指针类来管理了,每当有一个智能指针指向对象时,对象的引用计数要加1,当一个智能指针取消指向对象时,对象的引用计数要减1,在C++中,当一个对象生成和销毁时会自动调用(拷贝)构造函数和析构函数,所以,对对象引用数的管理就可以放到智能指针的(拷贝)构造函数和析构函数中。Android提供了一个智能指针可以配合LightRefBase使用:sp,sp的定义如下:
template <typename T>
class sp
{
public:
inline sp() : m_ptr(0) { }
sp(T* other);
sp(const sp<T>& other);
template<typename U> sp(U* other);
template<typename U> sp(const sp<U>& other);
~sp();
// Assignment
sp& operator = (T* other);
sp& operator = (const sp<T>& other);
template<typename U> sp& operator = (const sp<U>& other);
template<typename U> sp& operator = (U* other);
//! Special optimization for use by ProcessState (and nobody else).
void force_set(T* other);
// Reset
void clear();
// Accessors
inline T& operator* () const { return *m_ptr; }
inline T* operator-> () const { return m_ptr; }
inline T* get() const { return m_ptr; }
// Operators
COMPARE(==)
COMPARE(!=)
COMPARE(>)
COMPARE(<)
COMPARE(<=)
COMPARE(>=)
private:
template<typename Y> friend class sp;
template<typename Y> friend class wp;
void set_pointer(T* ptr);
T* m_ptr;
};
其中Accessors部分代码重载了*、->操作符使我们使用sp的时候就像使用真实的对象指针一样,可以直接操作对象的属性或方法,COMPARE是宏定义,用于重载关系操作符,由于对引用计数的控制主要是由(拷贝)构造函数和析构函数控制,所以忽略其他相关代码后,sp可以精简为如下形式(赋值操作符也省略掉了,构造函数省略相似的两个):
template <typename T>
class sp
{
public:
inline sp() : m_ptr(0) { }
sp(T* other);
sp(const sp<T>& other);
~sp();
private:
template<typename Y> friend class sp;
template<typename Y> friend class wp;
void set_pointer(T* ptr);
T* m_ptr;
};
默认构造函数使智能指针不指向任何对象,sp(T* other)与sp(const sp& other)的实现如下:
template<typename T>
sp<T>::sp(T* other)
: m_ptr(other)
{
if (other) other->incStrong(this);
}
template<typename T>
sp<T>::sp(const sp<T>& other)
: m_ptr(other.m_ptr)
{
if (m_ptr) m_ptr->incStrong(this);
}
内部变量m_ptr指向实际对象,并调用实际对象的incStrong函数,T继承自LightRefBase,所以此处调用的是LightRefBase的incStrong函数,之后实际对象的引用计数加1。
当智能指针销毁的时候调用智能指针的析构函数:
template<typename T>
sp<T>::~sp()
{
if (m_ptr) m_ptr->decStrong(this);
}
调用实际对象即LightRefBase的decStrong函数,其实现如下:
inline void decStrong(const void* id) const {
if (android_atomic_dec(&mCount) == 1) {
delete static_cast<const T*>(this);
}
}
android_atomic_dec返回mCount减1之前的旧值,如果返回1表示这次减过之后引用计数就是0了,就把对象delete掉。
RefBase
RefBase提供了更强大的引用计数的管理。
class RefBase
{
public:
void incStrong(const void* id) const;
void decStrong(const void* id) const;
void forceIncStrong(const void* id) const;
//! DEBUGGING ONLY: Get current strong ref count.
int32_t getStrongCount() const;
class weakref_type
{
public:
RefBase refBase() const;
void incWeak(const void* id);
void decWeak(const void* id);
// acquires a strong reference if there is already one.
bool attemptIncStrong(const void* id);
// acquires a weak reference if there is already one.
// This is not always safe. see ProcessState.cpp and BpBinder.cpp
// for proper use.
bool attemptIncWeak(const void* id);
//! DEBUGGING ONLY: Get current weak ref count.
int32_t getWeakCount() const;
//! DEBUGGING ONLY: Print references held on object.
void printRefs() const;
//! DEBUGGING ONLY: Enable tracking for this object.
// enable -- enable/disable tracking
// retain -- when tracking is enable, if true, then we save a stack trace
// for each reference and dereference; when retain == false, we
// match up references and dereferences and keep only the
// outstanding ones.
void trackMe(bool enable, bool retain);
};
weakref_type* createWeak(const void* id) const;
weakref_type* getWeakRefs() const;
// DEBUGGING ONLY: Print references held on object.
inline void printRefs() const { getWeakRefs()->printRefs(); }
// DEBUGGING ONLY: Enable tracking of object.
inline void trackMe(bool enable, bool retain)
{
getWeakRefs()->trackMe(enable, retain);
}
typedef RefBase basetype;
protected:
RefBase();
virtual ~RefBase();
//! Flags for extendObjectLifetime()
enum {
OBJECT_LIFETIME_STRONG = 0x0000,
OBJECT_LIFETIME_WEAK = 0x0001,
OBJECT_LIFETIME_MASK = 0x0003
};
void extendObjectLifetime(int32_t mode);
//! Flags for onIncStrongAttempted()
enum {
FIRST_INC_STRONG = 0x0001
};
virtual void onFirstRef();
virtual void onLastStrongRef(const void* id);
virtual bool onIncStrongAttempted(uint32_t flags, const void* id);
virtual void onLastWeakRef(const void* id);
private:
friend class weakref_type;
class weakref_impl;
RefBase(const RefBase& o);
RefBase& operator=(const RefBase& o);
weakref_impl* const mRefs;
};
不同于LightRefBase中通过mCount保存对象被引用的次数,RefBase内部并没有使用一个变量来维护引用计数,而是通过一个weakref_impl *类型的成员mRefs来维护引用计数,并且同时提供了强引用计数和弱引用计数。weakref_impl继承于RefBase::weakref_type,代码比较多,不过大都是调试代码,由宏定义分开,Release是不包含调试代码的,去除这些代码后其定义为:
#define INITIAL_STRONG_VALUE (1<<28)
class RefBase::weakref_impl : public RefBase::weakref_type
{
public:
volatile int32_t mStrong;
volatile int32_t mWeak;
RefBase* const mBase;
volatile int32_t mFlags;
weakref_impl(RefBase* base)
: mStrong(INITIAL_STRONG_VALUE)
, mWeak(0)
, mBase(base)
, mFlags(0)
{
}
void addStrongRef(const void* /*id*/) { }
void removeStrongRef(const void* /*id*/) { }
void addWeakRef(const void* /*id*/) { }
void removeWeakRef(const void* /*id*/) { }
void printRefs() const { }
void trackMe(bool, bool) { }
};
weakref_impl中的函数都是作为调试用,Release版的实现都是空的,成员变量分别表示强引用数、弱引用数、指向实际对象的指针与flag,flag可控制实际对象的生命周期,取值为0或RefBase中定义的枚举值。
RefBase提供了incStrong与decStrong函数用于控制强引用计数值,其弱引用计数值是由weakref_impl控制,强引用计数与弱引用数都保存在weakref_impl *类型的成员变量mRefs中。
RefBase同LightRefBase一样为对象提供了引用计数的方法,对引用计数的管理同样要由智能指针控制,由于RefBase同时实现了强引用计数与弱引用计数,所以就有两种类型的智能指针,sp(Strong Pointer)与wp(Weak Pointer)。
sp采用了模版,它的(拷贝)构造函数调用实际对象的incStrong函数,由于所有实际对象都是继承自RefBase,所以查看RefBase的incStrong。
void RefBase::incStrong(const void* id) const
{
weakref_impl* const refs = mRefs;
refs->incWeak(id);
refs->addStrongRef(id);
//下面函数为原子加1操作,并返回旧值。所以c=0x1000000,而mStrong变为0x1000001
const int32_t c = android_atomic_inc(&refs->mStrong);
LOG_ASSERT(c > 0, "incStrong() called on %p after last strong ref", refs);
if (c != INITIAL_STRONG_VALUE) {
//如果c不是初始值,则表明这个对象已经被强引用过一次了
return;
}
//下面函数为原子加1操作,并返回旧值。所以c=0x1000000,而mStrong变为0x1000001
android_atomic_add(-INITIAL_STRONG_VALUE, &refs->mStrong);
/* 如果是第一次引用,则调用onFirstRef,这个函数很重要,派生类可以重载这个函数,完成一些 初始化工作。 */
refs->mBase->onFirstRef();
}
addStrong的函数体为空,incStrong函数内部首先调用成员变量mRefs的incWeak函数将弱引用数加1,然后再将强引用数加1,由于android_atomic_inc返回变量的旧值,所以如果其不等于INITIAL_STRONG_VALUE就直接返回,则则是第一次由强智能指针(sp)引用,将其减去INITIAL_STRONG_VALUE后变成1,然后调用对象的onFirstRef。
成员变量mRefs是在对象的构造函数中初始化的:
RefBase::RefBase()
: mRefs(new weakref_impl(this))
{
}
weakrel_impl的incWeak继承自父类weakrel_type的incWeak:
void RefBase::weakref_type::incWeak(const void* id)
{
weakref_impl* const impl = static_cast<weakref_impl*>
impl->addWeakRef(id);
const int32_t c = android_atomic_inc(&impl->mWeak);
LOG_ASSERT(c >= 0, "incWeak called on %p after last weak ref", this);
}
addWeakRef实现同样为空,所以只是将弱引用计数加1。所以当对象被sp引用后,强引用计数与弱引用计数会同时加1。
当sp销毁时其析构函数调用对象即RefBase的decStrong函数:
void RefBase::decStrong(const void* id) const
{
weakref_impl* const refs = mRefs;
refs->removeStrongRef(id);
const int32_t c = android_atomic_dec(&refs->mStrong);
//注意,此时强弱引用计数都是1,下面函数调用的结果是c=1,强引用计数为0
if (c == 1) {
//调用onLastStrongRef,表明强引用计数减为0,对象有可能被delete
const_cast<RefBase*>(this)->onLastStrongRef(id);
//mFlags为0,所以会通过delete this把自己干掉
//注意,此时弱引用计数仍为1
if ((refs->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK) {
delete this;
}
}
refs->removeWeakRef(id);
refs->decWeak(id);
}
decStrong中将强引用数与弱引用数同时减1,如果这是最后一个强引用的话,会调用对象的onLastStrongRef,并且判断成员变量mRefs的成员变量mFlags来决定是否在对象的强引用数为0时释放对象。
mFlags可以为0或以下枚举值:
enum {
OBJECT_LIFETIME_WEAK = 0x0001,
OBJECT_LIFETIME_FOREVER = 0x0003
};
注意:FOREVER的值是3,二进制表示是B11,而WEAK的二进制是B01,也就是说FOREVER包括了WEAK的情况。
mFlags的值可以通过extendObjectLifetime函数改变:
void RefBase::extendObjectLifetime(int32_t mode)
{
android_atomic_or(mode, &mRefs->mFlags);
}
OBJECT_LIFETIME_FOREVER包含OBJECT_LIFETIME_WEAK(位运算中其二进制11包含01),所以当
refs->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK
为true时表示mFlags为0,实际对象的生命周期受强引用数控制,所以在强引用数为0时delete this,否则实际对象的生命周期就由弱引用数控制。
再来看decWeak:
void RefBase::weakref_type::decWeak(const void* id)
{
weakref_impl* const impl = static_cast<weakref_impl*>(this);
impl->removeWeakRef(id);
const int32_t c = android_atomic_dec(&impl->mWeak);
if (c != 1) return;
if ((impl->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK) {
if (impl->mStrong == INITIAL_STRONG_VALUE)
delete impl->mBase;
else {
delete impl;
}
} else {
impl->mBase->onLastWeakRef(id);
if ((impl->mFlags&OBJECT_LIFETIME_FOREVER) != OBJECT_LIFETIME_FOREVER) {
delete impl->mBase;
}
}
}
将弱引用数减1,若减1后不为0直接返回,否则判断
(impl->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK
实际对象生命周期被强引用数控制,接下来判断:
mpl->mStrong == INITIAL_STRONG_VALUE
如果判断为true表示对象只被弱引用引用过,现在弱引用数为0,直接删除实际对象。
如果判断为false,表示对象曾经被强引用引用过,但现在强引用为变为0了(因为增加或减小强引用数时一定同时增加或减小弱引用数,所以弱引用数为0时,强引用数一定为0),弱引用数为0了,直接释放mRefs,而实际对象由于受强引用数控制,已经在RefBase::decStrong中被delete了。
若判断结果为false:
判断mFlgs是否是OBJECT_LIFETIME_FOREVER,如果是,什么都不作由用户自己控制对象的生命周期,否则,实际对象的生命周期受弱引用数控制,现在弱引用数为0,delete实际对象。
wp(Weak Pointer)
定义如下:
template <typename T>
class wp
{
public:
typedef typename RefBase::weakref_type weakref_type;
inline wp() : m_ptr(0) { }
wp(T* other);
wp(const wp<T>& other);
wp(const sp<T>& other);
template<typename U> wp(U* other);
template<typename U> wp(const sp<U>& other);
template<typename U> wp(const wp<U>& other);
~wp();
// Assignment
wp& operator = (T* other);
wp& operator = (const wp<T>& other);
wp& operator = (const sp<T>& other);
template<typename U> wp& operator = (U* other);
template<typename U> wp& operator = (const wp<U>& other);
template<typename U> wp& operator = (const sp<U>& other);
void set_object_and_refs(T* other, weakref_type* refs);
// promotion to sp
sp<T> promote() const;
// Reset
void clear();
// Accessors
inline weakref_type* get_refs() const { return m_refs; }
inline T* unsafe_get() const { return m_ptr; }
// Operators
COMPARE(==)
COMPARE(!=)
COMPARE(>)
COMPARE(<)
COMPARE(<=)
COMPARE(>=)
private:
template<typename Y> friend class sp;
template<typename Y> friend class wp;
T* m_ptr;
weakref_type* m_refs;
};
同sp一样,m_ptr指向实际对象,但wp还有一个成员变量m_refs。
template<typename T>
wp<T>::wp(T* other)
: m_ptr(other)
{
if (other) m_refs = other->createWeak(this);
}
template<typename T>
wp<T>::wp(const wp<T>& other)
: m_ptr(other.m_ptr), m_refs(other.m_refs)
{
if (m_ptr) m_refs->incWeak(this);
}
RefBase::weakref_type* RefBase::createWeak(const void* id) const
{
mRefs->incWeak(id);
return mRefs;
}
可以看到,wp的m_refs就是RefBase即实际对象的mRefs。
wp析构的时候减少弱引用计数:
template<typename T>
wp<T>::~wp()
{
if (m_ptr) m_refs->decWeak(this);
}
由于弱指针没有重载*与->操作符,所以不能直接操作指向的对象,虽然有unsafe_get函数,但像名字所示的,不建议使用,直接使用实际对象指针的话就没必要用智能指针了。
因为弱指针不能直接操作对象,所以要想操作对象的话就要将其转换为强指针,即wp::promote方法:
template<typename T>
sp<T> wp<T>::promote() const
{
return sp<T>(m_ptr, m_refs);
}
template<typename T>
sp<T>::sp(T* p, weakref_type* refs)
: m_ptr((p && refs->attemptIncStrong(this)) ? p : 0)
{
}
是否能从弱指针生成一个强指针关键是看refs->attemptIncStrong,看其定义:
bool RefBase::weakref_type::attemptIncStrong(const void* id)
{
incWeak(id);
weakref_impl* const impl = static_cast<weakref_impl*>(this);
int32_t curCount = impl->mStrong;
LOG_ASSERT(curCount >= 0, "attemptIncStrong called on %p after underflow",
this);
while (curCount > 0 && curCount != INITIAL_STRONG_VALUE) {
if (android_atomic_cmpxchg(curCount, curCount+1, &impl->mStrong) == 0) {
break;
}
curCount = impl->mStrong;
}
if (curCount <= 0 || curCount == INITIAL_STRONG_VALUE) {
bool allow;
if (curCount == INITIAL_STRONG_VALUE) {
// Attempting to acquire first strong reference... this is allowed
// if the object does NOT have a longer lifetime (meaning the
// implementation doesn't need to see this), or if the implementation
// allows it to happen.
allow = (impl->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK
|| impl->mBase->onIncStrongAttempted(FIRST_INC_STRONG, id);
} else {
// Attempting to revive the object... this is allowed
// if the object DOES have a longer lifetime (so we can safely
// call the object with only a weak ref) and the implementation
// allows it to happen.
allow = (impl->mFlags&OBJECT_LIFETIME_WEAK) == OBJECT_LIFETIME_WEAK
&& impl->mBase->onIncStrongAttempted(FIRST_INC_STRONG, id);
}
if (!allow) {
decWeak(id);
return false;
}
curCount = android_atomic_inc(&impl->mStrong);
// If the strong reference count has already been incremented by
// someone else, the implementor of onIncStrongAttempted() is holding
// an unneeded reference. So call onLastStrongRef() here to remove it.
// (No, this is not pretty.) Note that we MUST NOT do this if we
// are in fact acquiring the first reference.
if (curCount > 0 && curCount < INITIAL_STRONG_VALUE) {
impl->mBase->onLastStrongRef(id);
}
}
impl->addWeakRef(id);
impl->addStrongRef(id);
#if PRINT_REFS
LOGD("attemptIncStrong of %p from %p: cnt=%d\n", this, id, curCount);
#endif
if (curCount == INITIAL_STRONG_VALUE) {
android_atomic_add(-INITIAL_STRONG_VALUE, &impl->mStrong);
impl->mBase->onFirstRef();
}
return true;
}
首先通过incWeak将弱引用数加1(被强指针sp引用会导致强引用数和弱引用数同时加1),然后:
int32_t curCount = impl->mStrong;
while (curCount > 0 && curCount != INITIAL_STRONG_VALUE) {
if (android_atomic_cmpxchg(curCount, curCount+1, &impl->mStrong) == 0) {
break;
}
curCount = impl->mStrong;
}
如果之前已经有强引用,直接将强引用数加1,android_atomic_cmpxchg表示如果impl->mStrong的值为curCount,则把impl->mString的值改为curCount+1,此处用while循环是防止其他线程已经增加了强引用数。
接下来:
if (curCount <= 0 || curCount == INITIAL_STRONG_VALUE)
表示对象目前没有强引用,这就要判断对象是否存在了。
如果curCount == INITIAL_STRONG_VALUE,表示对象没有被sp引用过。接下来判断:
allow = (impl->mFlags&OBJECT_LIFETIME_WEAK) != OBJECT_LIFETIME_WEAK
|| impl->mBase->onIncStrongAttempted(FIRST_INC_STRONG, id);
表示:如果对象的生命周期只受强引用控制,对象一定存在,要有强引用才可以管理对象的释放,所以一定会允许生成强引用;如果对象的生命周期受弱引用控制,调用对象的onIncStrongAttempted试图增加强引用,由于此时在弱引用中,弱引用一定不为0,对象也一定存在,调用onIncStrongAttempted的意图是因为类的实现者可能不希望用强引用引用对象。在RefBase中onIncStrongAttempted默认返回true:
bool RefBase::onIncStrongAttempted(uint32_t flags, const void* id)
{
return (flags&FIRST_INC_STRONG) ? true : false;
}
如果curCount <= 0(只会等于0),表示对象强引用数经历了INITIAL_STRONG_VALUE –>大于0 –> 0,接下来就要判断:
allow = (impl->mFlags&OBJECT_LIFETIME_WEAK) == OBJECT_LIFETIME_WEAK
&& impl->mBase->onIncStrongAttempted(FIRST_INC_STRONG, id);
如果对象的生命周期受强引用数控制,那么由于曾被sp引用过,现在强引用数又为0,对象就已经被delete了,所以就不能生成强引用,否则如果对象的生命周期受弱引用数控制,就通过onIncStrongAttempted看类的实现者是否希望当对象的强引用数变为0时可以再次被强引用引用。
if (!allow) {
decWeak(id);
return false;
}
如果allow为false表示不能从弱引用生成强引用,就要调用decWeak将弱引用减1(因为在promote入口先将弱引用加了1),然后返回false表示生成强引用失败。
if (curCount == INITIAL_STRONG_VALUE) {
android_atomic_add(-INITIAL_STRONG_VALUE, &impl->mStrong);
impl->mBase->onFirstRef();
}
最后,如果curCount == INITIAL_STRONG_VALUE表示第一次被sp引用,调用对象的onFirstRef函数。
总结
RefBase内部有一个指针指向实际对象,有一个weakref_impl类型的指针保存对象的强/弱引用计数、对象生命周期控制。
sp只有一个成员变量,用来保存实际对象,但这个实际对象内部已包含了weakref_impl *对象用于保存实际对象的引用计数。sp 管理一个对象指针时,对象的强、弱引用数同时加1,sp销毁时,对象的强、弱引用数同时减1。
wp中有两个成员变量,一个保存实际对象,另一个是weakref_impl *对象。wp管理一个对象指针时,对象的弱引用计数加1,wp销毁时,对象的弱引用计数减1。
weakref_impl中包含一个flag用于决定对象的生命周期是由强引用数控制还是由弱引用数控制:
1.当flag为0时,实际对象的生命周期由强引用数控制,weakref_impl *对象由弱引用数控制。
2.当flag为OBJECT_LIFETIME_WEAK时,实际对象的生命周期受弱引用数控制。
3.当flag为OBJECT_LIFETIME_FOREVER时,实际对象的生命周期由用户控制。
可以用extendObjectLifetime改变flag的值。