给定一个序列,求所有的出栈顺序

数据结构与算法

数学上的递推公式

可以推到得出,过程较为复杂,此处略过
![][1]
[1]: http://latex.codecogs.com/gif.latex?S_n=\sum_{i=0}^{n-1}S_i*S_{n-1-i}

参看:
<a href=”http://baike.baidu.com/link?url=oxX5VdsRLCJBkWTTTyPQFWAOW50V8Wqo6b1uljrgX3MrTO6j_82-wiFW-r-2i9GkuG83dBn3YHiKkEejlhCquq”>卡特兰数</a>
以下代码给出了递推关系:

int countS(int n) {
    if (n == 0) {
        return 1;
    }
    if (n == 1) {
        return 1;
    }
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += countS(i)*countS(n-1-i);
    }
    return sum;
}
```
## 模拟算法
栈每次有两种情况:入栈和出栈,但是,不是每种组合都是合法的。合法的出栈入栈必须满足以下条件(1表示入栈,0表示出栈):
1. 最终出栈和入栈的次数一样,也就是0和1的数量都等于元素的个数
2. 栈为空时不能有出栈动作,也就是在任意时刻,已经出现的1必须大于等于0出现的次数
例如:
111000(合法)
110001(不合法)
模拟生成合法序列的 C++ 代码如下:

```
#include <iostream>
using namespace std;
int m,a[20] = {1}, count0,count1;
void binSeq(int n) {
//边界条件,输出合法的序列,其中 m 为一半的数组长度。
    if (2*m == n) {
        for (int i = 0; i < 2*m ; i++) {
            cout << a[i];
        }
        cout << endl;
        return;
    }
    //条件判断,任意时刻1的个数小于 m 且大于0的个数
    if (count1 < m && count1 > count0) {
        a[n] = 1;
        count1++;
        binSeq(n+1);
        count1--;
        a[n] = 0;
        count0 ++;
        binSeq(n+1);
        count0 --;
    }
    //当不能所有的元素均已进行过入栈动作
    else if (count1 == m) {
        a[n] = 0;
        count0++;
        binSeq(n+1);
        count0--;
    }
    //当1和0数量相等即栈为空时,应入栈
    else if (count0 == count1) {
        a[n] = 1;
        count1++;
        binSeq(n+1);
        count1--;
    }
}
int main() {
    cin >> m;//输入元素个数
    count0 = 0;
    count1 = 1;//首先必须入栈
    binSeq(1);
    return 0;
}

```
最后的代码如下所示:
```
#include <iostream>
#include <vector>
#include <stack>
using namespace std;

int Size, PopCount, PushCount;//定义变量
vector < int >operation; // we can use 1 to stand for "push", and 0 for "pop"
stack < int >simulation;
//计算 n 个元素出栈顺序的个数
int countS(int n) {
    if (n == 0) {
        return 1;
    }
    if (n == 1) {
        return 1;
    }
    int sum = 0;
    for (int i = 0; i < n; i++) {
        sum += countS(i)*countS(n-1-i);
    }
    return sum;
}
//主要函数,原理与上面的简化班函数相同,不再写详细注释
void binSeq(int n, int *arr)
{
    if (2 * Size == n) {
    vector < int >::iterator Iter;
    int j = 0;
    for (Iter = operation.begin(); Iter != operation.end(); Iter++) {
        if (1 == (*Iter)) {
        simulation.push(arr[j]);
        j++;
        } else {
        cout << simulation.top() << " ";
        simulation.pop();
        }
    }
    cout << endl;
    return;
    }

    if (PushCount < Size && PushCount > PopCount) {
        operation.push_back(1);
        PushCount++;
        binSeq(n + 1, arr);
        operation.pop_back();
        PushCount--;
        operation.push_back(0);
        PopCount++;
        binSeq(n + 1, arr);
        operation.pop_back();
        PopCount--;
    }
    else if (PushCount == Size) {
        operation.push_back(0);
        PopCount++;
        binSeq(n + 1, arr);
        operation.pop_back();
        PopCount--;
    }
    else if (PopCount == PushCount) {
        operation.push_back(1);
        PushCount++;
        binSeq(n + 1, arr);
        operation.pop_back();
        PushCount--;
    }
}

int main()
{
    cout << "Please input the size of sequence:";
    operation.push_back(1);
    cin >> Size;
    cout << "Please input the size of sequence<int>:\n";
    int seq[Size];
    for (int i = 0; i < Size; i++) {
        cin >> seq[i];
    }
    cout << "The anwser is:\n";
    PopCount = 0;
    PushCount = 1;
    binSeq(1, seq);

    cout << "The number of all cases is : " << countS(Size) << endl;
    return 0;
}
```

    原文作者:vergilzhang
    原文地址: https://www.jianshu.com/p/98c4f56c3d73#comments
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞