My code:
public class NumArray {
private int[] nums;
private int[] st;
public NumArray(int[] nums) {
if (nums == null || nums.length == 0) {
return;
}
this.nums = nums;
int n = nums.length;
int level = (int) (Math.ceil(Math.log(n) / Math.log(2)));
int len = 2 * (int) Math.pow(2, level) - 1;
st = new int[len];
buildST(0, 0, n - 1, nums, st);
}
void update(int i, int val) {
int diff = val - nums[i];
nums[i] = val;
update(0, diff, i, 0, nums.length - 1, st);
}
public int sumRange(int i, int j) {
return getSum(0, 0, nums.length - 1, i, j, st);
}
private void update(int index, int diff, int i, int ss, int se, int[] st) {
if (i < ss || i > se) {
return;
}
else if (ss == se) {
st[index] += diff;
return;
}
else {
int mid = ss + (se - ss) / 2;
st[index] += diff;
update(2 * index + 1, diff, i, ss, mid, st);
update(2 * index + 2, diff, i, mid + 1, se, st);
}
}
private int getSum(int index, int ss, int se, int qs, int qe, int[] st) {
if (qs <= ss && qe >= se) {
return st[index];
}
else if (qe < ss || qs > se) {
return 0;
}
else {
int mid = ss + (se - ss) / 2;
return getSum(2 * index + 1, ss, mid, qs, qe, st) + getSum(2 * index + 2, mid + 1, se, qs, qe, st);
}
}
private int buildST(int index, int ss, int se, int[] nums, int[] st) {
if (ss == se) {
st[index] = nums[ss];
return st[index];
}
else {
int mid = ss + (se - ss) / 2;
st[index] = buildST(2 * index + 1, ss, mid, nums, st) + buildST(2 * index + 2, mid + 1, se, nums, st);
return st[index];
}
}
}
// Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);
这道题目采用了 segment tree的思想。然后
时间复杂度,
get sum: O(log n)
update: O(log n)
空间复杂度:
O(n) 其实是 2 * n -1
算是一种比较的方法了。
还有种做法叫做:
binary indexed tree
My code:
public class NumArray {
int[] nums;
int[] BIT;
public NumArray(int[] nums) {
this.nums = nums;
BIT = new int[nums.length + 1];
for (int i = 0; i < nums.length; i++) {
updateBIT(i, nums[i]);
}
}
void update(int i, int val) {
int diff = val - nums[i];
nums[i] = val;
updateBIT(i, diff);
}
public int sumRange(int i, int j) {
if (i == 0) {
return getSum(j);
}
else {
return getSum(j) - getSum(i - 1);
}
}
private void updateBIT(int i, int diff) {
int index = i + 1;
while (index < BIT.length) {
BIT[index] += diff;
index += (index & -index);
}
}
private int getSum(int i) {
int index = i + 1;
int ans = 0;
while (index > 0) {
ans += BIT[index];
index -= (index & -index);
}
return ans;
}
}
// Your NumArray object will be instantiated and called as such:
// NumArray numArray = new NumArray(nums);
// numArray.sumRange(0, 1);
// numArray.update(1, 10);
// numArray.sumRange(1, 2);
时间复杂度,
get sum: O(log n)
update: O(log n)
空间复杂度:
O(n) 其实是 n + 1
所以,综合比起来,binary index tree 具有两大优势:
- 实现起来更简单
- 占用的空间更小些,虽然在big O上是相等的。
Anyway, Good luck, Richardo! — 09/04/2016