NIO — Not Block IO。在java中大体有三种角色。
Channel
Buffer
Selector
Channel故名思义就是一个渠道,一条链接,实际物理意义映射着我们平时说的tcp链接。
在java的tcp服务端中,主要有两种Channel,ServerSocketChannel和 SocketChannel,工作模式都是全双工的。ServerSocketChannel是用于监听服务端端口的,假设我们的程序监听了8080端口,那么ServerSocketChannel就扮演者监听者的角色,如果有客户端握手成功了,将第一时间被这个Channel发现到。发现到以后,ServerSocketChannel会调用accept()来创建一个小弟ServerSocketChannel,对这个客户端链接独立服务。从这以后,ServerSocketChannel就不在关注这个客户端链接了。和客户端之间的数据传输,均是交由该SocketChannel去干。
由此看来。在一个服务端程序中,ServerSocketChannel就像是一个总机的角色,有客户端连进来了,由总机首次发觉,然后就交给一个新的分机去处理具体的业务数据流动。
客户端程序相比于服务端,因其是靶向连接到固定地址,所以不需要ServerSocketChannel的角色。
Buffer,服务端socket和客户端socket通讯时,存储数据的缓冲区,这个不展开讲了。网络编程中,我们常用ByteBuffer。
一个服务端程序,如果仅仅使用Channel和Buffer,我们也许会这样做:
一个线程去检测ServerSocketChannel的状态,然后每accept()一个客户端之后,起一个新的线程带着新的SocketChannel去玩,循环检测这个Channel上是否有数据传进来,读入Buffer,处理,用Buffer塞入Channel。。。
这样我们需要开启1+n个线程。当然,我们也可以使用1个线程轮寻所有Channel,但是这种方法效率低下,不被使用。为了解决这个问题,jdk引入了NIO的第三大组件 — Selector。
- Selector 复用选择器,可以register方法将所有需要事件监听的Channel都放入其中,监听的事件主要有两种,可读和可写。 可读又进一步区分成accept和read事件。
我们只需要开启一个线程循环调用Selector的select方法,即可一个返回发生事件的Channel迭代器,使用上更加方便了。
下面我们借用netty的example代码我们展示下如何使用Selector创建一个服务端程序 。
/*
* Copyright 2013-2018 Lilinfeng.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.phei.netty.nio;
import java.io.IOException;
import java.net.InetSocketAddress;
import java.net.SocketOption;
import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;
/**
* @author Administrator
* @date 2014年2月16日
* @version 1.0
*/
public class MultiplexerTimeServer implements Runnable {
private Selector selector;
private ServerSocketChannel servChannel;
private volatile boolean stop;
/**
* 初始化多路复用器、绑定监听端口
*
* @param port
*/
public MultiplexerTimeServer(int port) {
try {
selector = Selector.open();
servChannel = ServerSocketChannel.open();
servChannel.configureBlocking(false);
servChannel.socket().bind(new InetSocketAddress(port), 1024);
servChannel.register(selector, SelectionKey.OP_ACCEPT);
System.out.println("The time server is start in port : " + port);
} catch (IOException e) {
e.printStackTrace();
System.exit(1);
}
}
public void stop() {
this.stop = true;
}
/*
* (non-Javadoc)
*
* @see java.lang.Runnable#run()
*/
@Override
public void run() {
while (!stop) {
try {
selector.select(1000);
Set<SelectionKey> selectedKeys = selector.selectedKeys();
Iterator<SelectionKey> it = selectedKeys.iterator();
SelectionKey key = null;
while (it.hasNext()) {
key = it.next();
it.remove();
try {
handleInput(key);
} catch (Exception e) {
if (key != null) {
key.cancel();
if (key.channel() != null)
key.channel().close();
}
}
}
} catch (Throwable t) {
t.printStackTrace();
}
}
// 多路复用器关闭后,所有注册在上面的Channel和Pipe等资源都会被自动去注册并关闭,所以不需要重复释放资源
if (selector != null)
try {
selector.close();
} catch (IOException e) {
e.printStackTrace();
}
}
private void handleInput(SelectionKey key) throws IOException {
if (key.isValid()) {
// 处理新接入的请求消息
if (key.isAcceptable()) {
// Accept the new connection
ServerSocketChannel ssc = (ServerSocketChannel) key.channel();
SocketChannel sc = ssc.accept();
sc.configureBlocking(false);
// Add the new connection to the selector
sc.register(selector, SelectionKey.OP_READ);
}
if (key.isReadable()) {
// Read the data
SocketChannel sc = (SocketChannel) key.channel();
//sc.setOption(SocketOption)
ByteBuffer readBuffer = ByteBuffer.allocate(1024);
int readBytes = sc.read(readBuffer);
if (readBytes > 0) {
readBuffer.flip();
byte[] bytes = new byte[readBuffer.remaining()];
readBuffer.get(bytes);
String body = new String(bytes, "UTF-8");
System.out.println("The time server receive order : "
+ body);
String currentTime = "QUERY TIME ORDER"
.equalsIgnoreCase(body) ? new java.util.Date(
System.currentTimeMillis()).toString()
: "BAD ORDER";
doWrite(sc, currentTime);
} else if (readBytes < 0) {
// 对端链路关闭
key.cancel();
sc.close();
} else
; // 读到0字节,忽略
}
}
}
private void doWrite(SocketChannel channel, String response)
throws IOException {
if (response != null && response.trim().length() > 0) {
byte[] bytes = response.getBytes();
ByteBuffer writeBuffer = ByteBuffer.allocate(bytes.length);
writeBuffer.put(bytes);
writeBuffer.flip();
channel.write(writeBuffer);
}
}
public static void main(String[] args) throws IOException {
int port = 8080;
if (args != null && args.length > 0) {
try {
port = Integer.valueOf(args[0]);
} catch (NumberFormatException e) {
// 采用默认值
}
}
MultiplexerTimeServer timeServer = new MultiplexerTimeServer(port);
new Thread(timeServer, "NIO-MultiplexerTimeServer-001").start();
}
}
如果有c的编程经验的话,可以看出来,java中的nio在c中都是有对应原型的,selector对象对应着c中的nio句柄(不同平台下有着不同的实现),Channel对应着socket句柄,可以调用setoption设置socket参数。而Channel应该就是socket句柄调用read等方法读取出来的数据做了缓存。下面我们来验证一下我们的猜想。
selector = Selector.open();
这里打开了一个selector对象,查看实现。
public static Selector open() throws IOException {
return SelectorProvider.provider().openSelector();
}
看下provider的实现。
public static SelectorProvider provider() {
synchronized (lock) {
if (provider != null)
return provider;
return AccessController.doPrivileged(
new PrivilegedAction<SelectorProvider>() {
public SelectorProvider run() {
if (loadProviderFromProperty())
return provider;
if (loadProviderAsService())
return provider;
provider = sun.nio.ch.DefaultSelectorProvider.create();
return provider;
}
});
}
}
重要的是这一句”provider = sun.nio.ch.DefaultSelectorProvider.create();”,这里下层的代码,各个平台的jdk版本有了差异,我这里是mac,生成的是一个KQueueSelectorProvider对象。一步步跟进,最后调用到了这里
KQueueArrayWrapper() {
int var1 = SIZEOF_KEVENT * 128;
this.keventArray = new AllocatedNativeObject(var1, true);
this.keventArrayAddress = this.keventArray.address();
this.kq = this.init();
}
其中init是一个native方法,这个方法的jni层命名应该是包名+对象名+函数名,拼凑出来是这样的。”sun.nio.ch”+ “KQueueArrayWrapper”+”init”,结果是”Java_sun_nio_ch_KQueueArrayWrapper_init”找到jvm的实现代码,位于jdk/src/macosx/native/sun/nio/ch/KQueueArrayWrapper.c 。
JNIEXPORT jint JNICALL
Java_sun_nio_ch_KQueueArrayWrapper_init(JNIEnv *env, jobject this)
{
int kq = kqueue();
if (kq < 0) {
JNU_ThrowIOExceptionWithLastError(env, "KQueueArrayWrapper: kqueue() failed");
}
return kq;
}
确实是新建了一个kqueue句柄。由此可以得到结论,selector在macos下的底层实现是kqueue。
同时附上register和event的实现。
JNIEXPORT void JNICALL
Java_sun_nio_ch_KQueueArrayWrapper_register0(JNIEnv *env, jobject this,
jint kq, jint fd, jint r, jint w)
{
struct kevent changes[2];
struct kevent errors[2];
struct timespec dontBlock = {0, 0};
// if (r) then { register for read } else { unregister for read }
// if (w) then { register for write } else { unregister for write }
// Ignore errors - they're probably complaints about deleting non-
// added filters - but provide an error array anyway because
// kqueue behaves erratically if some of its registrations fail.
EV_SET(&changes[0], fd, EVFILT_READ, r ? EV_ADD : EV_DELETE, 0, 0, 0);
EV_SET(&changes[1], fd, EVFILT_WRITE, w ? EV_ADD : EV_DELETE, 0, 0, 0);
kevent(kq, changes, 2, errors, 2, &dontBlock);
}
JNIEXPORT jint JNICALL
Java_sun_nio_ch_KQueueArrayWrapper_kevent0(JNIEnv *env, jobject this, jint kq,
jlong kevAddr, jint kevCount,
jlong timeout)
{
struct kevent *kevs = (struct kevent *)jlong_to_ptr(kevAddr);
struct timespec ts;
struct timespec *tsp;
int result;
// Java timeout is in milliseconds. Convert to struct timespec.
// Java timeout == -1 : wait forever : timespec timeout of NULL
// Java timeout == 0 : return immediately : timespec timeout of zero
if (timeout >= 0) {
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000; //nanosec = 1 million millisec
tsp = &ts;
} else {
tsp = NULL;
}
result = kevent(kq, NULL, 0, kevs, kevCount, tsp);
if (result < 0) {
if (errno == EINTR) {
// ignore EINTR, pretend nothing was selected
result = 0;
} else {
JNU_ThrowIOExceptionWithLastError(env, "KQueueArrayWrapper: kqueue failed");
}
}
return result;
}
那么我们可以假设程序运行到这一步到时候
servChannel.register(selector, SelectionKey.OP_ACCEPT);
应该会调用到底层的函数Java_sun_nio_ch_KQueueArrayWrapper_register0。
我们来看一下:
public final SelectionKey register(Selector sel, int ops,
Object att)
throws ClosedChannelException
{
synchronized (regLock) {
if (!isOpen())
throw new ClosedChannelException();
if ((ops & ~validOps()) != 0)
throw new IllegalArgumentException();
if (blocking)
throw new IllegalBlockingModeException();
SelectionKey k = findKey(sel);
if (k != null) {
k.interestOps(ops);
k.attach(att);
}
if (k == null) {
// New registration
synchronized (keyLock) {
if (!isOpen())
throw new ClosedChannelException();
k = ((AbstractSelector)sel).register(this, ops, att);
addKey(k);
}
}
return k;
}
}
protected final SelectionKey register(AbstractSelectableChannel var1, int var2, Object var3) {
if (!(var1 instanceof SelChImpl)) {
throw new IllegalSelectorException();
} else {
SelectionKeyImpl var4 = new SelectionKeyImpl((SelChImpl)var1, this);
var4.attach(var3);
Set var5 = this.publicKeys;
synchronized(this.publicKeys) {
this.implRegister(var4);
}
var4.interestOps(var2);
return var4;
}
}
进一步看impRegister.
protected void implRegister(SelectionKeyImpl var1) {
if (this.closed) {
throw new ClosedSelectorException();
} else {
int var2 = IOUtil.fdVal(var1.channel.getFD());
this.fdMap.put(var2, new KQueueSelectorImpl.MapEntry(var1));
++this.totalChannels;
this.keys.add(var1);
}
}
发现并没有,这里仅仅是将Channel封装成SelectionKeyImpl塞入一个HashSet了,那么证明我们刚才的推断是错误的,那NIO是如何将注册的Channel和底层的kqueue关联起来呢。
我们在看这一步。
selector.select(1000);
查看jdk源码。
private int lockAndDoSelect(long var1) throws IOException {
synchronized(this) {
if (!this.isOpen()) {
throw new ClosedSelectorException();
} else {
Set var4 = this.publicKeys;
int var10000;
synchronized(this.publicKeys) {
Set var5 = this.publicSelectedKeys;
synchronized(this.publicSelectedKeys) {
var10000 = this.doSelect(var1);
}
}
return var10000;
}
}
}
看看doSelect
protected int doSelect(long var1) throws IOException {
boolean var3 = false;
if (this.closed) {
throw new ClosedSelectorException();
} else {
this.processDeregisterQueue();
int var7;
try {
this.begin();
var7 = this.kqueueWrapper.poll(var1);
} finally {
this.end();
}
this.processDeregisterQueue();
return this.updateSelectedKeys(var7);
}
}
查看poll
int poll(long var1) {
this.updateRegistrations();
int var3 = this.kevent0(this.kq, this.keventArrayAddress, 128, var1);
return var3;
}
void updateRegistrations() {
LinkedList var1 = this.updateList;
synchronized(this.updateList) {
KQueueArrayWrapper.Update var2 = null;
while((var2 = (KQueueArrayWrapper.Update)this.updateList.poll()) != null) {
SelChImpl var3 = var2.channel;
if (var3.isOpen()) {
this.register0(this.kq, var3.getFDVal(), var2.events & Net.POLLIN, var2.events & Net.POLLOUT);
}
}
}
}
结果显而易见了,在调用selector.select内部,会去检查是否有取消关联的channel,如果有,先把它删去,然后将新增的channel(存储在updateList链表变量中)注册到kqueue中。最后调用native函数event0来获取selector监听的所有Channel上是否有事件发生。
综上,Selector不单单是JDK内部批量管理了Channel的状态,更是借用了底层的异步IO实现来支持高并发的客户端连接场景。