题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3473
后缀数组。然后我这个傻叉没YY出O(n log n)的做法,只能手残了一个枚举每一个后缀,然后二分查找该后缀产生的最长符合条件的前缀,主席树维护查询操作的O(n log^2 n)的做法,然后又再次很长很慢的卡过去了额。。。(后来又YY了一下,好像枚举出改前缀之后,该前缀的所有位就没有必要枚举后缀了额。。。)
代码(巨丑无比,求大神轻喷):
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std ;
#define check( ch ) ( ch >= 'a' && ch <= 'z' )
#define inf 0x7fffffff
#define rep( i , x ) for ( int i = 0 ; i ++ < x ; )
#define down( i , x ) for ( int i = x ; i ; -- i )
typedef long long ll ;
const int maxn = 300100 ;
int Str[ maxn ] , len ;
void getstr( ) {
len = 0 ;
int ch ; for ( ch = getchar( ) ; ! check( ch ) ; ch = getchar( ) ) ;
Str[ ++ len ] = ch ;
for ( ch = getchar( ) ; check( ch ) ; ch = getchar( ) ) Str[ ++ len ] = ch ;
}
int n , k , m = 0 , s[ maxn ] , first[ maxn ] , num[ maxn ] , last[ maxn ] ;
int Rank[ maxn ] , sa[ maxn ] , height[ maxn ] , x[ maxn ] , y[ maxn ] , w[ maxn ] , r[ maxn ] ;
void build_sa( ) {
int M = 0 ;
rep( i , m ) M = max( M , Rank[ i ] = s[ i ] ) ;
int N , b = 1 ;
do {
rep( i , m ) {
x[ i ] = Rank[ i ] ;
y[ i ] = i + b <= m ? Rank[ i + b ] : 0 ;
}
b <<= 1 ;
rep( i , M + 1 ) w[ i - 1 ] = 0 ;
rep( i , m ) w[ y[ i ] ] ++ ;
rep( i , M ) w[ i ] += w[ i - 1 ] ;
rep( i , m ) r[ w[ y[ i ] ] -- ] = i ;
rep( i , M + 1 ) w[ i - 1 ] = 0 ;
rep( i , m ) w[ x[ r[ i ] ] ] ++ ;
rep( i , M ) w[ i ] += w[ i - 1 ] ;
down( i , m ) sa[ w[ x[ r[ i ] ] ] -- ] = r[ i ] ;
N = 0 ;
rep( i , m ) {
if ( i == 1 || x[ sa[ i ] ] != x[ sa[ i - 1 ] ] || y[ sa[ i ] ] != y[ sa[ i - 1 ] ] ) ++ N ;
Rank[ sa[ i ] ] = N ;
}
M = N ;
} while ( N < m ) ;
int temp = 0 ;
rep( i , m ) {
height[ Rank[ i ] ] = temp ;
for ( int j = temp ; i + j <= m && sa[ Rank[ i ] - 1 ] + j <= m && s[ i + j ] == s[ sa[ Rank[ i ] - 1 ] + j ] ; ++ j ) ++ height[ Rank[ i ] ] ;
temp = max( 0 , height[ Rank[ i ] ] - 1 ) ;
}
}
int st[ maxn ][ 21 ] , Stn ;
void Init_st( ) {
Stn = int( log2( m ) ) + 1 ;
rep( i , m ) st[ i ][ 0 ] = height[ i ] ;
rep( i , Stn ) rep( j , m ) {
st[ j ][ i ] = min( st[ j ][ i - 1 ] , st[ j + ( 1 << ( i - 1 ) ) ][ i - 1 ] ) ;
}
}
int Min( int l , int r ) {
int k = int( log2( r - l + 1 ) ) ;
return min( st[ l ][ k ] , st[ r - ( 1 << k ) + 1 ][ k ] ) ;
}
struct saver {
int v , t ;
void oper( int _v , int _t ) {
v = _v , t = _t ;
}
bool operator < ( const saver &a ) const {
return v < a.v || ( v == a.v && t < a.t ) ;
}
} B[ maxn ] ;
int suff[ maxn ] ;
struct node {
node *left , *right ;
int s ;
node( ) {
left = right = NULL ;
s = 0 ;
}
} *null = new( node ) ;
node *pre[ maxn ] ;
void Add( int x , int l , int r , node *u , node* &t ) {
t = new( node ) ;
t -> s = u -> s + 1 ;
if ( l == r ) return ;
int mid = ( l + r ) >> 1 ;
if ( x <= mid ) {
t -> right = u -> right ;
Add( x , l , mid , u -> left , t -> left ) ;
} else {
t -> left = u -> left ;
Add( x , mid + 1 , r , u -> right , t -> right ) ;
}
}
void Init_sgt( ) {
rep( i , m ) B[ i ].oper( num[ sa[ i ] ] , i ) ;
sort( B + 1 , B + m + 1 ) ;
memset( suff , 0 , sizeof( suff ) ) ;
rep( i , m ) {
if ( i == m || B[ i ].v != B[ i + 1 ].v ) suff[ B[ i ].t ] = m + 1 ;
else suff[ B[ i ].t ] = B[ i + 1 ].t ;
}
null -> left = null -> right = null ;
pre[ 0 ] = null ;
rep( i , m ) Add( suff[ i ] , 1 , m + 1 , pre[ i - 1 ] , pre[ i ] ) ;
}
int query_sgt( int l , int r , int L , int R , node *t ) {
if ( l == L && r == R ) return t -> s ;
int mid = ( L + R ) >> 1 ;
if ( r <= mid ) return query_sgt( l , r , L , mid , t -> left ) ;
if ( l > mid ) return query_sgt( l , r , mid + 1 , R , t -> right ) ;
return query_sgt( l , mid , L , mid , t -> left ) + query_sgt( mid + 1 , r , mid + 1 , R , t -> right ) ;
}
int Query_sgt( int l , int r , int vl , int vr ) {
int rec = query_sgt( vl , vr , 1 , m + 1 , pre[ r ] ) ;
int ret = query_sgt( vl , vr , 1 , m + 1 , pre[ l - 1 ] ) ;
return rec - ret ;
}
bool Check( int x , int pos ) {
int left , right ;
int l , r ;
l = 0 , r = Rank[ pos ] ;
while ( r - l > 1 ) {
int mid = ( l + r ) >> 1 ;
if ( Min( mid + 1 , Rank[ pos ] ) >= x ) r = mid ; else l = mid ;
}
left = r ;
l = Rank[ pos ] , r = m + 1 ;
while ( r - l > 1 ) {
int mid = ( l + r ) >> 1 ;
if ( Min( Rank[ pos ] + 1 , mid ) >= x ) l = mid ; else r = mid ;
}
right = l ;
return Query_sgt( left , right , right + 1 , m + 1 ) >= k ;
}
int Query( int x ) {
int L = 0 , R = m - x + 2 ;
while ( R - L > 1 ) {
int MID = ( L + R ) >> 1 ;
if ( Check( MID , x ) ) L = MID ; else R = MID ;
}
return L ;
}
int main( ) {
scanf( "%d%d" , &n , &k ) ;
memset( num , 0 , sizeof( num ) ) ;
rep( i , n ) {
getstr( ) ;
first[ i ] = m + 1 ;
rep( j , len ) {
s[ ++ m ] = Str[ j ] ;
num[ m ] = i ;
}
s[ last[ i ] = ++ m ] = int( '$' ) ;
}
build_sa( ) ;
Init_st( ) ;
Init_sgt( ) ;
rep( i , n ) {
ll ans = 0 ;
for ( int j = first[ i ] ; s[ j ] != int( '$' ) ; ++ j ) {
ans += ll( min( Query( j ) , last[ i ] - j ) ) ;
}
printf( "%lld " , ans ) ;
}
printf( "\n" ) ;
return 0 ;
}