实验要求
- 实现二叉树的抽象数据类型
- 实现二叉树的建立的运算
- 实现二叉树的遍历运算
- 实现创建哈夫曼树的算法
实验代码
typedef struct BiTNode //define tree Node
{ TElemType data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
int CreateBiTree(BiTree &T) //CreateBiTree function()
{
TElemType ch;
cout<<"Please input data(/ for NULL node!):";
cin>>ch;
if(ch=='/') T=NULL;
else{
if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))
{
cout<<"Overflow!";
return(ERROR);
}//end of if
T->data=ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}//end of else
return(OK);
}//end of CreateBiTree function()
int InOrderTravers(BiTree T) //InOrderTravers sub-function
{
if(T)
{
if(InOrderTravers(T->lchild))
{
cout<<T->data<<"->";
if(InOrderTravers(T->rchild)) return 1;
}//end of if lchild
return 0;
}//end of if T
return 1;
}//end of InOrderTravers sub-function
void HuffmanCoding(HuffmanTree &HT,HuffmanCode&HC,int *w,int n) //sub-function
{
int m,i,s1,s2,start,c,f;
HuffmanTree p;
if(n<=1) return;
m=2*n-1;
HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(p=HT+1,i=1;i<=n;++i,++p,++w) //initial HT[1...n]
{
p->weight=*w;
cout<<endl<<"HT["<<i<<"].weight="<<p->weight<<" ";
p->parent=0;
p->lchild=0;
p->rchild=0;
}
for(;i<=m;++i,++p) //initial HT[n+1...2+n1]
{
p->weight=0;
p->parent=0;
p->lchild=0;
p->rchild=0;
}
cout<<endl<<endl<<"HuffmanTree is created in following order :";
for(i=n+1;i<=m;++i)
{
Select(HT,i-1,s1,s2); //s1 is the least,s2 is the second least
HT[s1].parent=i;
HT[s2].parent=i;
HT[i].lchild=s1;
HT[i].rchild=s2;
HT[i].weight=HT[s1].weight+HT[s2].weight;
cout<<endl<<"HT["<<s1<<"] and HT["<<s2<<"] create";
cout<<" HT["<<i<<"], weight="<<HT[i].weight;
}
HC=(HuffmanCode)malloc((n+1)*sizeof(char *));
char *cd;
cd=(char *)malloc(n*sizeof(char));
cd[n-1]='\0';
cout<<endl<<endl<<"HuffmanTree Code is as follows :"<<endl;
for(i=1;i<=n;++i)
{
start=n-1;
for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)
if(HT[f].lchild==c)
cd[--start]='0';
else
cd[--start]='1';
HC[i]=(char *)malloc((n-start)*sizeof(char));
strcpy(HC[i],&cd[start]);
printf("\nHT[%d] node's Huffman code is:%s",i,HC[i]);
}
free(cd);
} // HuffmanCoding() end
相关文章:
数据结构之栈(C语言版)
数据结构之图、广度优先搜索以及佛洛依德算法