Medium
Given n
nodes labeled from 0
to n - 1
and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.
For example:
Given n = 5
and edges = [[0, 1], [0, 2], [0, 3], [1, 4]]
, return true
.
Given n = 5
and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]]
, return false
.
Note: you can assume that no duplicate edges will appear in edges
. Since all edges are undirected, [0, 1]
is the same as [1, 0]
and thus will not appear together in edges
.
解法一
用并查集做特别简单,记下模版就可以,不过有个地方要注意理解一下, 就是如何判断图中有环那里。if(find(edges[i][0]) == find(edges[i][1])){ return false;}
意思就是如果还没连edges之前,两个node的祖先就是一个,那他们要试连起来,肯定就有环了,很好理解吧。还要注意,如果是tree, graph里面vertices数目和edges数目之间有个固定的关系:e = v - 1
, 这两点理解好了,这道题用并查集非常简单。
class Solution {
private int[] father;
public boolean validTree(int n, int[][] edges) {
father = new int[n];
for (int i = 0; i < n; i++){
father[i] = i;
}
for (int i = 0; i < edges.length; i++){
if(find(edges[i][0]) == find(edges[i][1])){
return false;
}
connect(edges[i][0], edges[i][1]);
}
return edges.length == n - 1;
}
private int find(int x){
if (father[x] == x){
return x;
}
return find(father[x]);
}
private void connect(int a, int b){
int root_a = find(a);
int root_b = find(b);
if (root_a != root_b){
father[root_a] = root_b;
}
}
}
解法二
BFS
就用固定套路吧,先建图(通常都是邻接表)。建图很简单,map的key对应每个 vertice, value对应每个vertice的neighbors,用arraylist表示。 遍历edges,每个edge[] 分别代表一条edge的两端,分别加到彼此的邻居里。这里有一个E = V – 1要注意,如果不满足就直接返回false. 用Queue做bfs, 用一个boolean[] visited记录是否访问过,先把0放进去。每次从queue里取出一个,如果这个已经被访问过,立马返回false. 为什么?这种情况只可能出现在环里,你在queue里放进去过这个元素好几次。 然后访问poll出来这个点的邻接表,把没有访问过的元素offer到队列。最后我们要保证每个元素都被访问过,如果有没访问过的就返回false.
class Solution {
public boolean validTree(int n, int[][] edges) {
Map<Integer, ArrayList<Integer>> neighbors = new HashMap<>();
buildGraph(n, edges, neighbors);
if (edges.length != n - 1){
return false;
}
Queue<Integer> queue = new LinkedList<>();
boolean[] visited = new boolean[n];
queue.offer(0);
while (!queue.isEmpty()){
Integer curt = queue.poll();
if (visited[curt]){
return false;
}
visited[curt] = true;
for (Integer nei : neighbors.get(curt)){
if (!visited[nei]){
queue.offer(nei);
}
}
}
for (boolean b : visited){
if (!b){
return false;
}
}
return true;
}
private void buildGraph(int n, int[][] edges, Map<Integer, ArrayList<Integer>> neighbors){
for (int i = 0; i < n; i++){
neighbors.put(i, new ArrayList<Integer>());
}
for (int i = 0; i < edges.length; i++){
int u = edges[i][0];
int v = edges[i][1];
neighbors.get(u).add(v);
neighbors.get(v).add(u);
}
}
}