Given n nodes in a graph labeled from
1 to `n. There is no edges in the graph at beginning.
You need to support the following method:
-
connect(a, b)
, an edge to connect node a and node b -
query(a)
, Returns the number of connected component nodes which include nodea
.
Have you met this question in a real interview? Yes
Example
5 // n = 5
query(1) return 1
connect(1, 2)
query(1) return 2
connect(2, 4)
query(1) return 3
connect(1, 4)
query(1) return 3
这道题相对于Connecting Graph I 多出了一个要求a所在联通块的节点个数。这里我们多创建一个int[] size来记录每个节点所在联通块的节点个数。当connect(a,b)的时候,如果root_a != root_b, 我们让root_b认root_a为爸爸,那么root_a所在联通块的size就要加上之前root_b所在联通块的size. 而这道题很容易错的地方其实是query(a), 这里不能直接返回size[a], 二是要返回size[find(a)], size永远按老大哥的来计算,跟小弟无关。
public class ConnectingGraph2 {
public int[] father = null;
public int[] size = null;
public ConnectingGraph2(int n) {
// initialize your data structure here.
father = new int[n + 1];
size = new int[n + 1];
for (int i = 1; i < n + 1; i++){
father[i] = i;
size[i] = 1;
}
}
public void connect(int a, int b) {
// Write your code here
int root_a = find(a);
int root_b = find(b);
if (root_a != root_b){
father[root_b] = root_a;
size[root_a] += size[root_b];
}
}
public int query(int a) {
// Write your code here
int root_a = find(a);
return size[root_a];
}
private int find(int a){
if (father[a] == a){
return a;
}
return father[a] = find(father[a]);
}
}