这是悦乐书的第307次更新,第327篇原创
01 看题和准备
今天介绍的是LeetCode算法题中Easy级别的第176题(顺位题号是746)。在楼梯上,第i步有一些非负成本成本[i]分配(0索引)。一旦支付了费用,您可以爬一到两步。您需要找到到达楼层顶部的最低成本,您可以从索引为0的步骤开始,也可以从索引为1的步骤开始。例如:
输入:cost= [10,15,20]
输出:15
说明:最便宜的是从成本[1]开始,支付该成本并返回顶部。
输入:cost= [1,100,1,1,1,100,1,1,100,1]
输出:6
说明:最便宜的是从成本[0]开始,并且仅在1上跳,跳过成本[3]。
注意:
成本数组的长度在[2,1000]范围内。
每个成本[i]将是[0,999]范围内的整数。
本次解题使用的开发工具是eclipse,jdk使用的版本是1.8,环境是win7 64位系统,使用Java语言编写和测试。
02 第一种解法
题目的意思是在成本数组中找出成本总和最小的组合,遍历完数组,遍历时可以跨一个单位或两个单位,和之前的爬楼梯的题目有点类似。我们可以推敲一下,如果要爬到第i级楼梯,有两种选择,一是从第i-1级爬上来,二是从第i-2级阶梯爬上来,然后取其中两者的成本值,哪个花费小,就选哪个。对此我们新建一个数组dp,来存储前面每次选择后要花费的成本之和。
因此,我们可以得出一个关系:dp[i] = Math.min(之前爬两次的花费+当前此次是爬两步的花费, 之前爬一次的花费+当前此次是爬一步的花费);依次计算取其中的较小值存入dp中即可,最后返回dp的最后一位元素。
public int minCostClimbingStairs(int[] cost) {
int[] dp = new int[cost.length+1];
for (int i=2; i<cost.length+1; i++) {
dp[i] = Math.min(dp[i-2]+cost[i-2], dp[i-1]+cost[i-1]);
}
return dp[dp.length-1];
}
03 第二种解法
我们还可以对上面的解法进行优化,不使用数组单独存每一次的计算结果,因为新的计算只是依赖前两次的结果,所以我们使用了两个临时变量来存储前两次的计算值,思路和上面第一种解法还是一样的。
public int minCostClimbingStairs(int[] cost) {
int prev = 0, prev2 = 0, current = 0;
for(int i = 2; i<cost.length+1; i++){
current = Math.min(cost[i-2]+prev2, cost[i-1]+prev);
prev2 = prev;
prev = current;
}
return current;
}
04 小结
算法专题目前已日更超过五个月,算法题文章176+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。
以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!