算法的时间复杂度(一)

转自:http://www.cnblogs.com/cj723/archive/2011/03/05/1971640.html

  2.9 算法的时间复杂度

2.9.1 算法时间复杂度定义

        在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐近时间复杂度,简称为时间复杂度。其中f(n)是问题规模n的某个函数。

        这样用大写O()来体现算法时间复杂度的记法,我们称之为大O记法。
        一般情况下,随着n的增大,T(n)增长最慢的算法为最优算法。
        显然,由此算法时间复杂度的定义可知,我们的三个求和算法的时间复杂度分别为O(n),O(1),O(n2)。我们分别给它们取了非官方的名称,O(1)叫常数阶,O(n)叫线性阶,O(n2)叫平方阶,当然,还有其他的一些阶,我们之后会介绍。

2.9.2 推导大O阶方法

        那么如何分析一个算法的时间复杂度呢?即如何推导大O阶呢?我们给出了下面的推导方法,基本上,这也就是总结前面我们举的例子

推导大O阶
1.用常数1取代运行时间中的所有加法常数。
2.在修改后的运行次数函数中,只保留最高阶项。
3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。
得到的结果就是大O阶。

        哈,仿佛是得到了游戏攻略一样,我们好像已经得到了一个推导算法时间复杂度的万能公式。可事实上,分析一个算法的时间复杂度,没有这么简单,我们还需要多看几个例子。

2.9.3 常数阶
        首先顺序结构的时间复杂度。下面这个算法,也就是刚才的第二种算法,为什么时间复杂度不是O(3),而是O(1)。

 

int sum = 0,n = 100;  /*执行一次*/

sum = (1+n)*n/2;   /*执行一次*/

printf(“%d”, sum);  /*执行一次*/

        这个算法的运行次数函数是f(n)=3。根据我们推导大O阶的方法,第一步就是把常数项3改为1。在保留最高阶项时发现,它根本没有最高阶项,所以这个算法的时间复杂度为O(1)。
        另外,我们试想一下,如果这个算法当中的语句sum=(1+n)*n/2有10句,即:

 1 int sum = 0, n = 100; /*执行一次*/
 2 sum = (1+n)*n/2;   /*执行第1次*/
 3 sum = (1+n)*n/2;   /*执行第2次*/
 4 sum = (1+n)*n/2;   /*执行第3次*/
 5 sum = (1+n)*n/2;   /*执行第4次*/
 6 sum = (1+n)*n/2;   /*执行第5次*/
 7 sum = (1+n)*n/2;   /*执行第6次*/
 8 sum = (1+n)*n/2;   /*执行第7次*/
 9 sum = (1+n)*n/2;   /*执行第8次*/
10 sum = (1+n)*n/2;   /*执行第9次*/
11 sum = (1+n)*n/2;   /*执行第10次*/
12 printf("%d",sum);  /*执行一次*/ 

        事实上无论n为多少,上面的两段代码就是3次和12次执行的差异,这种与问题的大小无关(n的多少),执行时间恒定的算法,我们称之为具有O(1)的时间复杂度,又叫常数阶。
        注意,不管这个常数是多少,我们都记作O(1),而不能是O(3)、O(12)等其他任何数字。这是初学者常常犯的错误。
        对于分支结构而言,无论是真,还是假,执行的次数都是恒定的,不会随着n的变大而发生变化,所以单纯的分支结构(不包含在循环结构中),其时间复杂度也是O(1)。

2.9.4 线性阶
        循环结构就会复杂很多。要确定某个算法的阶次,我们常常需要确定某个特定语句或某个语句集运行的次数。因此,我们要分析算法的复杂度,关键就是要分析循环结构的运行情况。
        下面这段代码,它的循环的时间复杂度为O(n)。因为循环体中的代码须要执行n次。

int i;

for(i = 0; i < n; i++)

{

   /*时间复杂度为O(1)的程序步骤序列*/

}

2.9.5 对数阶
        那么下面的这段代码,时间复杂度又是多少呢?

1 int count = 1;
2 while (count < n)
3 {
4    count = count * 2;
5    /*时间复杂度为O(1)的程序步骤序列*/
6 }

        由于每次count乘以2之后,就距离n更近了一分。也就是说,有多少个2相乘后大于n,则会退出循环。由2x=n得到x=log2n。所以这个循环的时间复杂度为O(logn)。

2.9.6 平方阶
        下面的例子是一个循环嵌套,它的内循环刚才我们已经分析过,时间复杂度为O(n)。

1 int i,j;
2 for(i = 0; i < n; i++)
3 {
4    for (j = 0; j < n;j++)                       
5    {                                      
6        /*时间复杂度为O(1)的程序步骤序列*/
7    }                                      
8 }

        而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,再循环n次。所以这段代码的时间复杂度为O(n2)。
        如果外循环的循环次数改为了m,时间复杂度就变为O(m×n)。

1 int i,j;
2 for(i = 0; i < m; i++)
3 {
4    for (j = 0; j < n; j++)                
5    {                                      
6        /*时间复杂度为O(1)的程序步骤序列*/
7    }                                      
8 }

        所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。
        那么下面这个循环嵌套,它的时间复杂度是多少呢?

1 int i,j;
2 for(i = 0; i < n; i++)
3 {
4     for (j = i; j < n; j++)  /*注意int j = i而不是0*/
5     {                                      
6           /*时间复杂度为O(1)的程序步骤序列*/
7     }                                      
8 }

 

    由于当i = 0时,内循环执行了n次,当i = 1时,执行了n-1次,……当i = n-1时,内循环执行了1次。所以总的执行次数为

《算法的时间复杂度(一)》

 

       

用我们推导大O阶的方法,第一条,没有加法常数不予考虑;第二条,只保留最高阶项,因此保留n2/2;第三条,去除这个项相乘的常数,也就是去除1/2,最终这段代码的时间复杂度为O(n2)。
        从这个例子,我们也可以得到一个经验,其实理解大O推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力,所以想考研的朋友,要想在求算法时间复杂度这里不失分,可能需要强化你的数学,特别是数列方面的知识和解题能力。
        我们继续看例子,对于方法调用的时间复杂度又如何分析。

int i,j;

for(i = 0; i < n; i++)

{

   function(i);

}

 

       上面这段代码调用一个函数function。

void function(int count)

{

   print(count);

}

       函数体是打印这个参数。其实这很好理解,function函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)。
       假如function是下面这样的:

1 void function(int count)
2 {
3    int j;
4    for (j = count; j < n;j++)                       
5    {                                      
6       /*时间复杂度为O(1)的程序步骤序列*/
7    }    
8 } 

        事实上,这和刚才举的例子是一样的,只不过把嵌套内循环放到了函数中,所以最终的时间复杂度为O(n2)。
        下面这段相对复杂的语句:

 1 n++;       /*执行次数为1*/
 2 function(n);     /*执行次数为n*/
 3 int i,j;     
 4 for(i = 0; i < n; i++)  /*执行次数为n2*/
 5 {
 6    function (i);
 7 }
 8 for(i = 0; i < n; i++)  /*执行次数为n(n + 1)/2*/
 9 {
10    for (j = i;j < n; j++)                       
11    {                                      
12         /*时间复杂度为O(1)的程序步骤序列*/
13    }                                      
14 }
15  

         它的执行次数《算法的时间复杂度(一)》 ,根据推导大O阶的方法,最终这段代码的时间复杂度也是O(n2)。

 

常见的时间复杂度,按数量级递增排列依次为:

  常数阶O(1){Hash表的查找}、

  对数阶O(log2n){二分查找}、

  线性阶O(n)、

  线性对数阶O(nlog2n){快速排序的平均复杂度}、

  平方阶O(n^2){冒泡排序}、

  立方阶O(n^3){求最短路径的Floyd算法}、

  k次方阶O(n^k)、

  指数阶O(2^n){汉诺塔}。

 

    原文作者:算法小白
    原文地址: https://www.cnblogs.com/chris-cp/p/3921644.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞