题目描述:
假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?
六种解法:
import org.junit.Test;
/** * 爬楼梯问题其实质就是斐波那契数列! * * @author Administrator * */
public class ClimbTheStairs {
int total;
// 递归调用
public int fib01(int n) {
if (n == 1 || n == 2)
total = n;
else
total = fib01(n - 2) + fib01(n - 1);
return total;
}
// 三目运算符
public int fib02(int n) {
return (n == 1 || n == 2) ? n : fib02(n - 2) + fib02(n - 1);
}
// 备忘录法
public int dfs(int n, int[] array) {
if (array[n] != 0) {
return array[n];
} else {
array[n] = dfs(n - 1, array) + dfs(n - 2, array);
return array[n];
}
}
public int fib03(int n) {
if (n == 0) {
return 1;
}
if (n == 1 || n == 2) {
return n;
} else {
int[] array = new int[n + 1];
array[1] = 1;
array[2] = 2;
return dfs(n, array);
}
}
// 动态规划法 (利用数组来存储)
public int fib04(int n) {
if (n == 0)
return 1;
int[] array = new int[n + 1];
array[0] = 1;
array[1] = 1;
for (int i = 2; i <= n; i++) {
array[i] = array[i - 1] + array[i - 2];
}
return array[n];
}
// 状态压缩法(又称滚动数组、滑动窗口,用于优化动态规划法的空间复杂度)
public int fib05(int n) {
if (n == 1 || n == 0)
return 1;
n = n - 1;
int result = 0;
int zero = 1;
int first = 1;
while (n > 0) {
result = zero + first;
zero = first;
first = result;
n--;
}
return result;
}
// 斐波那契数列的通项公式
public int fib06(int n) {
if (n == 0)
return 1;
if (n == 1 || n == 2)
return n;
int result = (int) Math.floor(
1 / Math.sqrt(5) * (Math.pow((1 + Math.sqrt(5)) / 2, n + 1) - Math.pow((1 - Math.sqrt(5)) / 2, n + 1)));
return result;
}
@Test
public void testClimb() {
int num01 = fib01(7);
System.out.println(num01);
int num02 = fib02(8);
System.out.println(num02);
int num03 = fib03(0);
System.out.println(num03);
int num04 = fib04(8);
System.out.println(num04);
int num05 = fib05(8);
System.out.println(num05);
int num06 = fib06(2);
System.out.println("用斐波那契数列的通项公式:" + num06);
}
}