AVL树:平衡二叉树,一般是用平衡因子差值决定并通过旋转来实现,左右子树树高差不超过1,那么和红黑树比较它是严格的平衡二叉树,平衡条件非常严格(树高差只有1),只要插入或删除不满足上面的条件就要通过旋转来保持平衡。由于旋转是非常耗费时间的。我们可以推出AVL树适合用于插入删除次数比较少,但查找多的情况。
红黑树:平衡二叉树,通过对任何一条从根到叶子的简单路径上各个节点的颜色进行约束,确保没有一条路径会比其他路径长2倍,因而是近似平衡的。所以相对于严格要求平衡的AVL树来说,它的旋转保持平衡次数较少。用于搜索时,插入删除次数多的情况下我们就用红黑树来取代AVL。(现在部分场景使用跳表来替换红黑树,可搜索“为啥 redis 使用跳表(skiplist)而不是使用 red-black?”)
B树,B+树:它们特点是一样的,是多路查找树,一般用于数据库系统中,为 什么,因为它们分支多层数少呗,都知道磁盘IO是非常耗时的,而像大量数据存储在磁盘中所以我们要有效的减少磁盘IO次数避免磁盘频繁的查找。B+树是B树的变种树,有n棵子树的节点中含有n个关键字,每个关键字不保存数据,只用来索引,数据都保存在叶子节点。是为文件系统而生的。
Trie树:又名单词查找树,一种树形结构,常用来操作字符串。它是不同字符串的相同前缀只保存一份。相对直接保存字符串肯定是节省空间的,但是它保存大量字符串时会很耗费内存(是内存)。类似的有前缀树(prefix tree),后缀树(suffix tree),radix tree(patricia tree, compact prefix tree),crit-bit tree(解决耗费内存问题),以及前面说的double array trie。简单的补充下我了解应用前缀树:字符串快速检索,字符串排序,最长公共前缀,自动匹配前缀显示后缀。后缀树:查找字符串s1在s2中,字符串s1在s2中出现的次数,字符串s1,s2最长公共部分,最长回文串。radix tree:linux内核,nginx。
作者:王伟豪链接:http://www.zhihu.com/question/30527705/answer/52919336
来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。