一、二叉树介绍
二叉查找树(Binary Search Tree,BST),又称二叉排序树,也称二叉搜索树,它或者是一颗空树,或者具有如下性质的树:若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;若它的右子树不为空,则右子树上所有节点的值都大于根节点的值。它的左右子树也分别为二叉查找树。
结论:中序遍历一颗二叉查找树可以得到一个按关键字递增的有序序列。简单来说,比根小的往左边放 比根大的往右边放。
二、代码实现
1、BST结点类:
1 public class BSTNode<K, V> { 2 public K key; 3 public V value; 4 public BSTNode<K, V> left; 5 public BSTNode<K, V> right; 6 public BSTNode<K, V> parent; 7 public boolean isLeftChild; 8 public int height; 9 public int num; 10 public boolean isRed = true; // 后面才学习的红黑树 11 12 public BSTNode() { 13 } 14 15 public BSTNode(K key, V value, BSTNode<K, V> left, BSTNode<K, V> right, BSTNode<K, V> parent) { 16 super(); 17 this.key = key; 18 this.value = value; 19 this.left = left; 20 this.right = right; 21 this.parent = parent; 22 } 23 24 public boolean isLeft() { 25 return isLeftChild; 26 } 27 28 public boolean isRight() { 29 return !isLeftChild; 30 } 31 32 @Override 33 public String toString() { 34 return (isRed ? "红色" : "黑色") + " [" + key + "]<-" + (parent == null ? "" : parent.key); 35 } 36 }
View Code
2、BST接口:
1 import java.util.List; 2 import java.util.function.Consumer; 3 4 public interface IBinarySearchTree<K, V> { 5 /** 6 * 新增节点 7 * @param k 关键字 8 * @param v 值 9 */ 10 BSTNode<K, V> insert(K k, V v); 11 12 /** 13 * 中序遍历 14 * @param con 处理中序遍历的每个元素的函数 15 */ 16 void inorder(Consumer<K> con); 17 18 /** 19 * 查找元素 20 * @param key 21 * @return 22 */ 23 V lookupValue(K key); 24 25 /** 26 * 获取最小关键字 27 * @return 28 */ 29 K min(); 30 31 /** 32 * 获取最大关键字 33 * @return 34 */ 35 K max(); 36 37 /** 38 * 移除关键字对应的节点 39 * @param key 40 */ 41 void remove(K key); 42 43 /** 44 * x的后继——比x大的第一个元素 1、是其右子树的最小值 45 * 2、没有右子树,则向上追溯,直到某个祖先节点是左孩子,返回这个祖先节点的父节点,它就是x的后继 46 * 47 * @param x 48 * @return 49 */ 50 K successor(K x); 51 52 /** 53 * 前驱 54 * @param x 关键字 55 * @return 56 */ 57 K predecessor(K x); 58 59 boolean isBalance(); 60 61 /** 62 * 返回节点数 63 * @return 64 */ 65 int getSize(); 66 67 /** 68 * 高度 69 * @return 70 */ 71 int getHeight(); 72 73 List<List<BSTNode<K, V>>> levelOrder(); 74 }
View Code
3、BST实现:
1 import java.util.ArrayList; 2 import java.util.Comparator; 3 import java.util.LinkedList; 4 import java.util.List; 5 import java.util.Queue; 6 import java.util.Stack; 7 import java.util.function.Consumer; 8 9 /** 10 * 二叉搜索树 11 * 12 */ 13 public class BinarySearchTree<K, V> implements IBinarySearchTree<K, V> { 14 /** 15 * 根节点 16 */ 17 protected BSTNode root; 18 /** 19 * 元素个数 20 */ 21 protected int size; 22 private Comparator comparator; 23 24 public BinarySearchTree() { 25 } 26 27 public BinarySearchTree(Comparator comparator) { 28 this.comparator = comparator; 29 } 30 31 32 // parent curr 双指针 33 @Override 34 public BSTNode<K, V> insert(K key, V value) { 35 if (!(key instanceof Comparable)) { 36 throw new ClassCastException(); 37 } 38 39 BSTNode<K, V> parent = null; 40 BSTNode<K, V> curr = root; 41 while (curr != null) { 42 parent = curr; 43 if (compare(key, curr.key) < 0) { 44 curr = curr.left; 45 } else if (compare(key, curr.key) > 0) { 46 curr = curr.right; 47 } else { 48 curr.value = value; 49 return curr; 50 } 51 } 52 curr = new BSTNode(key, value, null, null, null); 53 //link current to parent 54 curr.parent = parent; 55 if (parent == null) { 56 root = curr; 57 } else if (compare(key, parent.key) < 0) { 58 parent.left = curr; 59 curr.isLeftChild = true; 60 } else { 61 parent.right = curr; 62 curr.isLeftChild = false; 63 } 64 65 size++; 66 updateHeight(curr); 67 return curr; 68 } 69 70 private void updateHeight(BSTNode<K, V> curr) { 71 if (curr.parent == null) return;//util root 72 73 BSTNode<K, V> p = curr.parent; 74 if (p.height == curr.height) { 75 p.height++; 76 updateHeight(p);//递归 77 } 78 } 79 80 @SuppressWarnings({"unchecked", "rawtypes"}) 81 private int compare(K key1, K key2) { 82 if (null == comparator) { 83 return ((Comparable) key1).compareTo((Comparable) key2); 84 } else { 85 return comparator.compare(key1, key2); 86 } 87 } 88 89 /** 90 * 中序遍历 91 * @param con 处理中序遍历的每个元素的函数 92 */ 93 @Override 94 public void inorder(Consumer<K> con) { 95 if (root != null) 96 // inorder2(root, con); 97 inorder(root, con); 98 } 99 100 /* 递归形式 */ 101 private void inorder(BSTNode<K, V> p, Consumer<K> con) { 102 if (p != null) { 103 inorder(p.left, con); 104 con.accept(p.key); 105 inorder(p.right, con); 106 } 107 } 108 109 /*迭代形式*/ 110 private void inorder2(BSTNode<K, V> p, Consumer<K> con) { 111 Stack<BSTNode<K, V>> stack = new Stack<>(); 112 BSTNode<K, V> curr = p; 113 //curr不为空或者栈不为空,都可以继续处理 114 while (curr != null || !stack.isEmpty()) {//没有生产也没有消费,就退出循环了 115 //沿左支线一撸到底,全部入栈 116 while (curr != null) { 117 stack.push(curr); 118 curr = curr.left; 119 } 120 //处理栈顶 121 if (!stack.isEmpty()) { 122 BSTNode<K, V> pop = stack.pop(); 123 con.accept(pop.key); 124 // curr指向pop的右子树,继续外层循环 125 curr = pop.right;//有可能为空,为空,只消费栈中内容,不为空,就要向栈中生产若干内容 126 } 127 } 128 } 129 130 // 二叉查找树查找之所以快 每次丢弃一半 lgn 131 @Override 132 public V lookupValue(K key) { 133 BSTNode<K, V> lookupNode = lookupNode(key); 134 return lookupNode == null ? null : lookupNode.value; 135 } 136 137 protected BSTNode<K, V> lookupNode(K key) { 138 BSTNode<K, V> p = root; 139 //只要p不为空,并且没找到 140 while (p != null && compare(key, p.key) != 0) { 141 if (compare(key, p.key) < 0) 142 p = p.left; 143 else 144 p = p.right; 145 } 146 return p; 147 } 148 149 // 最左边的结点 150 @Override 151 public K min() { 152 return minNode(root).key; 153 } 154 155 protected BSTNode<K, V> minNode(BSTNode p) { 156 while (p.left != null) { 157 p = p.left; 158 } 159 return p; 160 } 161 162 // 最右边的结点 163 @Override 164 public K max() { 165 return maxNode(root).key; 166 } 167 168 protected BSTNode<K, V> maxNode(BSTNode p) { 169 while (p.right != null) { 170 p = p.right; 171 } 172 return p; 173 } 174 175 /*右单旋 176 * p 177 * q 178 * */ 179 protected void rightRotate(BSTNode p, BSTNode q) { 180 boolean pIsLeft = p.isLeft(); 181 BSTNode pp = p.parent; 182 183 BSTNode x = q.right; 184 p.left = x; 185 if (x != null) { 186 x.parent = p; 187 x.isLeftChild = true; 188 } 189 q.right = p; 190 p.parent = q; 191 p.isLeftChild = false; 192 193 194 //设定p和gg的关系 195 q.parent = pp; 196 if (pp == null) { 197 root = q; 198 return; 199 } 200 if (pIsLeft) { 201 pp.left = q; 202 q.isLeftChild = true; 203 } else { 204 pp.right = q; 205 q.isLeftChild = false; 206 } 207 } 208 209 /*左单旋*/ 210 protected void leftRotate(BSTNode p, BSTNode q) { 211 boolean pIsLeft = p.isLeft(); 212 BSTNode pp = p.parent; 213 //p和q的左子——B的关系 214 BSTNode B = q.left; 215 p.right = B; 216 if (B != null) { 217 B.parent = p; 218 B.isLeftChild = false; 219 } 220 221 //p,q的关系 222 q.left = p; 223 p.parent = q; 224 p.isLeftChild = true; 225 226 //p和pp的关系 227 q.parent = pp; 228 //p是根节点 229 if (pp == null) { 230 root = q; 231 return; 232 } 233 234 if (pIsLeft) { 235 pp.left = q; 236 q.isLeftChild = true; 237 } else { 238 pp.right = q; 239 q.isLeftChild = false; 240 } 241 } 242 243 @Override 244 public void remove(K key) { 245 removeNode(lookupNode(key)); 246 size--;// 记得减少元素个数 247 } 248 249 protected void removeNode(BSTNode<K, V> x) { 250 if (x != null) { 251 if (x.left == null && x.right == null) {// leaf node. 第一种情况 没有子节点 252 if (x.parent == null) { 253 root = null; 254 return; 255 } 256 if (x.isLeftChild) { 257 x.parent.left = null; 258 } else { 259 x.parent.right = null; 260 } 261 x.parent = null; 262 x = null; 263 } else if (x.left == null) {// 第二种情况 有子节点,但左子为空,有右孩子 264 if (x.isLeftChild) { 265 BSTNode<K, V> c = x.right; 266 BSTNode<K, V> parent = x.parent; 267 parent.left = c; 268 c.isLeftChild = true; 269 c.parent = parent; 270 } else { 271 if (x.parent != null) { 272 x.parent.right = x.right; 273 x.right.parent = x.parent; 274 } else {// 根节点 275 root = x.right; 276 } 277 } 278 x = null; 279 } else if (x.right == null) {// 第三种情况 有子节点,但右子为空,有左孩子 280 if (x.isLeftChild) { 281 x.parent.left = x.left; 282 x.left.parent = x.parent; 283 } else { 284 if (x.parent != null) { 285 x.parent.right = x.left; 286 x.left.isLeftChild = false; 287 x.left.parent = x.parent; 288 } else { // 根节点 289 root = x.left; 290 } 291 } 292 x = null; 293 } else { // 第四种情况 都不为空 294 BSTNode<K, V> minOfRight = minNode(x.right); 295 x.key = minOfRight.key;// 更换x的内容 296 removeNode(minOfRight); // 删掉右子树种最小的元素 297 } 298 } 299 } 300 301 302 // 有右子树 ,则后继为右子树最小 303 // 否则往上回溯,找到一个是左结点的祖先,则后继是该结点的父亲 304 @Override 305 public K successor(K x) { 306 BSTNode<K, V> xNode = lookupNode(x); 307 if (xNode == null) { 308 return null; 309 } 310 BSTNode<K, V> yNode = successor(xNode); 311 return yNode == null ? null : yNode.key; 312 313 } 314 315 protected BSTNode<K, V> successor(BSTNode<K, V> xNode) { 316 if (xNode == null) { 317 return null; 318 } 319 if (xNode.right != null) { 320 return minNode(xNode.right); 321 } 322 BSTNode<K, V> yNode = xNode.parent; 323 while (yNode != null && xNode == yNode.right) { 324 xNode = yNode; 325 yNode = yNode.parent; 326 } 327 return yNode; 328 } 329 330 // 与找后继结点对称 331 @Override 332 public K predecessor(K x) { 333 BSTNode<K, V> xNode = lookupNode(x); 334 if (xNode == null) { 335 return null; 336 } 337 if (xNode.left != null) { 338 return maxNode(xNode.left).key; 339 } 340 BSTNode<K, V> yNode = xNode.parent; 341 while (yNode != null && xNode.isLeftChild) { 342 xNode = yNode; 343 yNode = yNode.parent; 344 } 345 return yNode == null ? null : yNode.key; 346 } 347 348 @Override 349 public boolean isBalance() { 350 return !unBalance(root); 351 } 352 353 protected boolean unBalance(BSTNode g) { 354 if (g == null) return false; 355 int minus = getHeight(g.left) - getHeight(g.right); 356 return Math.abs(minus) > 1 357 || unBalance(g.right) 358 || unBalance(g.left); 359 } 360 361 362 363 /** 364 * 获取树的节点数 365 * @return 366 */ 367 @Override 368 public int getSize() { 369 return size; 370 } 371 372 @Override 373 public int getHeight() { 374 return getHeight(root); 375 } 376 377 protected int getHeight(BSTNode node) { 378 if (node == null) return 0; 379 int l = getHeight(node.left); 380 int r = getHeight(node.right); 381 return 1 + Math.max(l, r); 382 } 383 384 385 public List<List<BSTNode<K, V>>> levelOrder(BSTNode<K, V> x) { 386 // int num=x.num;//累进的编号 387 List<List<BSTNode<K, V>>> res = new ArrayList<>(); 388 Queue<BSTNode<K, V>> q = new LinkedList<>(); 389 q.add(x); 390 BSTNode<K, V> last = x; 391 BSTNode<K, V> nLast = null; 392 List<BSTNode<K, V>> l = new ArrayList<>(); 393 res.add(l); 394 while (!q.isEmpty()) { 395 BSTNode<K, V> peek = q.peek(); 396 //把即将弹出的节点的子节点加入队列 397 if (peek.left != null) { 398 peek.left.num = peek.num * 2; 399 q.add(peek.left); 400 nLast = peek.left; 401 } 402 if (peek.right != null) { 403 peek.right.num = peek.num * 2 + 1; 404 q.add(peek.right); 405 nLast = peek.right; 406 } 407 408 l.add(q.poll());//弹出,加入到当前层列表 409 if (peek == last && !q.isEmpty()) {//如果现在弹出的节点是之前标记的最后节点,就要换列表 410 l = new ArrayList<>(); 411 res.add(l); 412 last = nLast; 413 } 414 } 415 return res; 416 } 417 418 419 // 层次遍历 420 @Override 421 public List<List<BSTNode<K, V>>> levelOrder() { 422 root.num = 1; 423 return levelOrder(root); 424 } 425 426 // 按照格式打印 427 @Override 428 public String toString() { 429 StringBuilder res = new StringBuilder(); 430 List<List<BSTNode<K, V>>> lists = levelOrder(); 431 int level = 1; 432 int height = getHeight(); 433 for (List<BSTNode<K, V>> l : 434 lists) { 435 int gap = ex(2, height - level) - 1;//gap 436 // printGap(gap);//打印左边margin 437 int beginNum = ex(2, level - 1); 438 for (BSTNode<K, V> node : l) { 439 while (beginNum != node.num) { 440 //打印gap 441 for (int i = 0; i < 2 * gap; i++) { 442 res.append(" "); 443 } 444 res.append("**"); 445 //打印gap 446 for (int i = 0; i < 2 * gap; i++) { 447 res.append(" "); 448 } 449 res.append(" "); 450 beginNum++; 451 } 452 //打印gap 453 for (int i = 0; i < 2 * gap; i++) { 454 res.append(" "); 455 } 456 res.append(node.key); 457 //打印gap 458 for (int i = 0; i < 2 * gap; i++) { 459 res.append(" "); 460 } 461 res.append(" "); 462 463 beginNum++; 464 } 465 level++; 466 res.append("\n"); 467 } 468 return res.toString(); 469 } 470 471 private void printGap(int margin) { 472 for (int i = 0; i < margin; i++) { 473 System.out.print(" "); 474 } 475 } 476 477 private void printGap(int gap, String s, int gap1) { 478 for (int i = 0; i < gap; i++) { 479 System.out.print(" "); 480 } 481 System.out.printf("%2s", s); 482 for (int i = 0; i < gap; i++) { 483 System.out.print(" "); 484 } 485 486 } 487 488 public static int ex(int a, int n) { 489 if (n == 0) 490 return 1; 491 if (n == 1) 492 return a; 493 int temp = a; // a 的 1 次方 494 int res = 1; 495 int exponent = 1; 496 while ((exponent << 1) < n) { 497 temp = temp * temp; 498 exponent = exponent << 1; 499 } 500 501 res *= ex(a, n - exponent); 502 503 return res * temp; 504 } 505 }
View Code