图论算法之最短路径之Dijkstra算法

1736年,瑞士数学家Euler(欧拉)在他的一篇论文中讨论了格尼斯七桥问题,由此诞生了一个全新的数学分支——图论(Graph Theory),在经历了200多年的发展之后,图论已经积累了大量的理论和结果,其应用理论也逐步扩大。
一、最短路径

Dijkstra算法

1、基本思想
如果v0至u的最短路径经过v1,那么v0到v1的路径也是v0到v1的最短路径。
按路径长度的递增次序,逐步产生最短路径。
Dijkstra算法的本质是贪心算法。
2、步骤
(1)首先求出v0为源点长度最短的一条最短路径,即具有最小权的边< v0,v>。
(2)求出源点到各个顶点下一个最短路径:设其终点是u,则v0到u的最短路径或者是边< v0,u>,或者由一条已求得的最短路径(v0,v)和边<v,u>构成。
(3)重复2直到从顶点v0到其他各个顶点的最短路径全部求出为止。
3、算法图解
操作步骤:
(1) 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”(例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞)。
(2) 从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
(3) 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
(4) 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

《图论算法之最短路径之Dijkstra算法》 01.jpg

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。

《图论算法之最短路径之Dijkstra算法》 02.jpg 初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。

此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
代码说明:
以”邻接矩阵”为例对迪杰斯特拉算法进行说明,对于”邻接表”实现的图在后面会给出相应的源码。

  • 基本定义:
class MatrixUDG {
    #define MAX    100
    #define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)
    private:
        char mVexs[MAX];    // 顶点集合
        int mVexNum;             // 顶点数
        int mEdgNum;             // 边数
        int mMatrix[MAX][MAX];   // 邻接矩阵

    public:
        // 创建图(自己输入数据)
        MatrixUDG();
        // 创建图(用已提供的矩阵)
        //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
        MatrixUDG(char vexs[], int vlen, int matrix[][9]);
        ~MatrixUDG();

        // 深度优先搜索遍历图
        void DFS();
        // 广度优先搜索(类似于树的层次遍历)
        void BFS();
        // prim最小生成树(从start开始生成最小生成树)
        void prim(int start);
        // 克鲁斯卡尔(Kruskal)最小生成树
        void kruskal();
        // Dijkstra最短路径
        void dijkstra(int vs, int vexs[], int dist[]);
        // 打印矩阵队列图
        void print();

    private:
        // 读取一个输入字符
        char readChar();
        // 返回ch在mMatrix矩阵中的位置
        int getPosition(char ch);
        // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
        int firstVertex(int v);
        // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
        int nextVertex(int v, int w);
        // 深度优先搜索遍历图的递归实现
        void DFS(int i, int *visited);
        // 获取图中的边
        EData* getEdges();
        // 对边按照权值大小进行排序(由小到大)
        void sortEdges(EData* edges, int elen);
        // 获取i的终点
        int getEnd(int vends[], int i);
};

MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示”顶点i(即mVexs[i])”和”顶点j(即mVexs[j])”是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

  • Dijkstra算法
/*
 * Dijkstra最短路径。
 * 即,统计图中"顶点vs"到其它各个顶点的最短路径。
 *
 * 参数说明:
 *       vs -- 起始顶点(start vertex)。即计算"顶点vs"到其它顶点的最短路径。
 *     prev -- 前驱顶点数组。即,prev[i]的值是"顶点vs"到"顶点i"的最短路径所经历的全部顶点中,位于"顶点i"之前的那个顶点。
 *     dist -- 长度数组。即,dist[i]是"顶点vs"到"顶点i"的最短路径的长度。
 */
void MatrixUDG::dijkstra(int vs, int prev[], int dist[])
{
    int i,j,k;
    int min;
    int tmp;
    int flag[MAX];      // flag[i]=1表示"顶点vs"到"顶点i"的最短路径已成功获取。

    // 初始化
    for (i = 0; i < mVexNum; i++)
    {
        flag[i] = 0;              // 顶点i的最短路径还没获取到。
        prev[i] = 0;              // 顶点i的前驱顶点为0。
        dist[i] = mMatrix[vs][i]; // 顶点i的最短路径为"顶点vs"到"顶点i"的权。
    }

    // 对"顶点vs"自身进行初始化
    flag[vs] = 1;
    dist[vs] = 0;

    // 遍历mVexNum-1次;每次找出一个顶点的最短路径。
    for (i = 1; i < mVexNum; i++)
    {
        // 寻找当前最小的路径;
        // 即,在未获取最短路径的顶点中,找到离vs最近的顶点(k)。
        min = INF;
        for (j = 0; j < mVexNum; j++)
        {
            if (flag[j]==0 && dist[j]<min)
            {
                min = dist[j];
                k = j;
            }
        }
        // 标记"顶点k"为已经获取到最短路径
        flag[k] = 1;

        // 修正当前最短路径和前驱顶点
        // 即,当已经"顶点k的最短路径"之后,更新"未获取最短路径的顶点的最短路径和前驱顶点"。
        for (j = 0; j < mVexNum; j++)
        {
            tmp = (mMatrix[k][j]==INF ? INF : (min + mMatrix[k][j]));
            if (flag[j] == 0 && (tmp  < dist[j]) )
            {
                dist[j] = tmp;
                prev[j] = k;
            }
        }
    }

    // 打印dijkstra最短路径的结果
    cout << "dijkstra(" << mVexs[vs] << "): " << endl;
    for (i = 0; i < mVexNum; i++)
        cout << "  shortest(" << mVexs[vs] << ", " << mVexs[i] << ")=" << dist[i] << endl;
}

迪杰斯特拉算法的源码
这里分别给出”邻接矩阵图”和”邻接表图”的迪杰斯特拉算法源码。
1. 邻接矩阵源码(MatrixUDG.cpp)
2. 邻接表源码(ListUDG.cpp)

算法转载自:http://www.cnblogs.com/skywang12345/

    原文作者:不困于情
    原文地址: https://www.jianshu.com/p/adf64c3527ae
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞