代码
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
const int INF = 0x3f3f3f3f;
struct Edge {
int vertex, weight;
};
class Graph {
private:
int n;
vector<Edge> * edges;
bool * visited;
public:
int * dist;
Graph (int input_n) {
n = input_n;
edges = new vector<Edge>[n];
dist = new int[n];
visited = new bool[n];
memset(visited, 0, n);
memset(dist, 0x3f, n * sizeof(int));
}
~Graph() {
delete[] dist;
delete[] edges;
delete[] visited;
}
void insert(int x, int y, int weight) {
edges[x].push_back(Edge{y, weight});
edges[y].push_back(Edge{x, weight});
}
void dijkstra(int v) {
dist[v]=0; //从v出发,首先将v的距离设置为0(自己到自己)
for(int i=0;i<n;i++){ //遍历所有其他结点
int min_dist=INF,min_vertex; //初始化一个最短距离和当前距离最短的节点
for(int j=0;j<n;j++){
if(!visited[j]&&dist[j]<min_dist){ 如果当前结点的距离比min_dist小则更新之
min_dist=dist[j];
min_vertex=j;
}
}
visited[min_vertex]=1;//标记已访问
for (Edge& j:edges[min_vertex]){//遍历min_vertex的每一条边
if(min_dist+j.weight<dist[j.vertex]){//如果当前的最小距离,加上边的距离小于j.vertex的距离的话就更新j.vertex的距离——这意味着j.vertex的距离没那么大
dist[j.vertex]=min_dist+j.weight;
}
}
}
}
};
int main() {
int n, m;
cin >> n >> m;
Graph g(n);
for (int i = 0; i < m; i++) {
int a, b, c;
cin >> a >> b >> c;
g.insert(a, b, c);
}
g.dijkstra(0);
for (int i = 0; i < n; i++) {
cout << i << ": " << g.dist[i] << endl;
}
return 0;
}
Dijkstra算法的思路:
参见代码注释